Publications by authors named "Joseph Costantine"

In disaster-prone areas, damaged infrastructure requires impromptu communications leveraging lightweight and adaptive antennas. Accordingly, we introduce a bi-stable deployable quadrifilar helix antenna that passively reconfigures its radiation characteristics in terms of pattern and polarization. The proposed structure is composed of counter-rotating helical strips, connected by rotational joints to allow a simultaneous change in the helix height and radius.

View Article and Find Full Text PDF

The article presented herein proposes an alternative skin cancer screening method that delivers non-invasive diagnosis and monitoring of skin lesions by leveraging electromagnetic waves with radio frequency technology and circuits. The proposed handheld device, named SkanMD, comprises a sensitive electromagnetic sensor, customized radio frequency wave analyzer circuits, and machine learning algorithms. The device is used in clinical studies that are performed on a total of 46 individuals that are composed of 18 patients with pre-diagnosed skin cancer, 10 individuals with benign nevi, 7 patients with arbitrary diseases, and 11 healthy individuals.

View Article and Find Full Text PDF

Response to environmental thermomechanical inputs in applications that range from wearable electronics to aerospace structures necessitates agile communication systems driven by reconfigurable electromagnetic structures. Antennas in these systems must dynamically preserve acceptable radiation characteristics while enabling on-demand performance reconfiguration. However, existing reconfiguration mechanisms through stretchable conductors rely on high-strain behavior in soft substrates, which limits their applicability.

View Article and Find Full Text PDF

This work introduces novel body-matched, vasculature-inspired, quasi-antenna-arrays that act as electromagnetic sensors to instantaneously, continuously, and wirelessly sense glucose variations in the bloodstream. The proposed sensors are personalized, leverage electromagnetic waves, and are coupled with a custom machine-learning-based signal-processing module. These sensors are flexible, and embedded in wearable garments such as socks, which provide conformity to curved skin surfaces and movement resilience.

View Article and Find Full Text PDF

Painless, needle-free, and continuous glucose monitoring sensors are needed to enhance the life quality of diabetic patients. To that extent, we propose a first-of-its-kind, highly sensitive, noninvasive continuous glycemic monitoring wearable multisensor system. The proposed sensors are validated on serum, animal tissues, and animal models of diabetes and in a clinical setting.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies show that cancer and diabetes are linked, and having cancer might increase the risk of getting diabetes.
  • The research found that a special enzyme (Nox4) causes issues in how cells work, leading to more aggressive cancer in diabetes cases.
  • The team discovered that fixing the problems with certain cell signals could help slow down the progress of colon cancer, making it an important area for future treatments.
View Article and Find Full Text PDF