Publications by authors named "Joseph Colacino"

Blocking the pyrimidine nucleotide synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several and models of the disease.

View Article and Find Full Text PDF

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities.

View Article and Find Full Text PDF

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma.

View Article and Find Full Text PDF

Ataluren is an aromatic acid derivative with a 1,2,4-oxodiazole moiety. Ataluren-O-1β-acyl glucuronide is a prominent circulatory metabolite in mice, rats, dogs, and humans following oral administration of ataluren. The objective of this paper was to evaluate the stability in vitro and in vivo of ataluren-O-1β-acyl glucuronide metabolite.

View Article and Find Full Text PDF

6β-Hydroxy-21-desacetyl deflazacort (6β-OH-21-desDFZ) is a major circulating but not biologically active metabolite of deflazacort (DFZ). In vitro studies were performed to evaluate cytochrome P450 (CYP)- and transporter-mediated drug interaction potentials of 6β-OH-21-desDFZ. Up to 50 µM, the highest soluble concentration in the test system, 6β-OH-21-desDFZ weakly inhibited (IC  > 50 µM) the enzyme activity of CYPs 1A2, 2B6, 2C8, 2C9, and 2D6, while moderately inhibiting CYP2C19 and CYP3A4 with IC values of approximately 50 and 35 μM, respectively.

View Article and Find Full Text PDF

PTC596 is a novel, orally bioavailable, small-molecule tubulin-binding agent that reduces B-cell-specific Moloney murine leukemia virus insertion site 1 activity and is being developed for the treatment of solid tumors. A phase 1, open-label, multiple-ascending-dose study was conducted to evaluate the pharmacokinetics and safety of the drug in subjects with advanced solid tumors. PTC596 was administered orally biweekly based on body weight.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC range, 2.

View Article and Find Full Text PDF

Deflazacort (Emflaza) was approved in the United States in 2017 for the treatment of the Duchenne muscular dystrophy in patients aged 2 years and older. Several deflazacort metabolites were isolated and identified from rats, dogs, monkeys, and humans. Among them, 1ß,2ß-epoxy-3ß-hydroxy-21-desacetyl deflazacort, referred to as Metabolite V, was reported to be one of the major circulating metabolites in humans.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC range, 2.

View Article and Find Full Text PDF

Ataluren promotes ribosomal readthrough of premature termination codons in mRNA which result from nonsense mutations. In vitro studies were performed to characterize the metabolism and enzyme kinetics of ataluren and its interaction potential with CYP enzymes. Incubation of [ C]-ataluren with human liver microsomes indicated that the major metabolic pathway for ataluren is via direct glucuronidation and that the drug is not metabolized via cytochrome P450 (CYP).

View Article and Find Full Text PDF

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons.

View Article and Find Full Text PDF

PTC299 was identified as an inhibitor of VEGFA mRNA translation in a phenotypic screen and evaluated in the clinic for treatment of solid tumors. To guide precision cancer treatment, we performed extensive biological characterization of the activity of PTC299 and demonstrated that inhibition of VEGF production and cell proliferation by PTC299 is linked to a decrease in uridine nucleotides by targeting dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for pyrimidine nucleotide synthesis. Unlike previously reported DHODH inhibitors that were identified using enzyme assays, PTC299 is a more potent inhibitor of DHODH in isolated mitochondria suggesting that mitochondrial membrane lipid engagement in the DHODH conformation is required for its optimal activity.

View Article and Find Full Text PDF

Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill".

View Article and Find Full Text PDF

Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations.

View Article and Find Full Text PDF

Current anti-VEGF (Vascular Endothelial Growth Factor A) therapies to treat various cancers indiscriminately block VEGF function in the patient resulting in the global loss of VEGF signaling which has been linked to dose-limiting toxicities as well as treatment failures due to acquired resistance. Accumulating evidence suggests that this resistance is at least partially due to increased production of compensatory tumor angiogenic factors/cytokines. VEGF protein production is differentially controlled depending on whether cells are in the normal "homeostatic" state or in a stressed state, such as hypoxia, by post-transcriptional regulation imparted by elements in the 5' and 3' untranslated regions (UTR) of the VEGF mRNA.

View Article and Find Full Text PDF

PTC725 is a small molecule NS4B-targeting inhibitor of hepatitis C virus (HCV) genotype (gt) 1 RNA replication that lacks activity against HCV gt2. We analyzed the Los Alamos HCV sequence database to predict susceptible/resistant HCV gt's according to the prevalence of known resistance-conferring amino acids in the NS4B protein. Our analysis predicted that HCV gt3 would be highly susceptible to the activity of PTC725.

View Article and Find Full Text PDF

PTC299 is a novel small molecule that specifically blocks the production of protein from selected mRNAs that under certain conditions use noncanonical ribosomal translational pathways. Hypoxia, oncogenic transformation, and viral infections limit normal translation and turn on these noncanonical translation pathways that are sensitive to PTC299. Vascular endothelial cell growth factor (VEGF) is an example of a transcript that is posttranscriptionally regulated.

View Article and Find Full Text PDF

A novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target.

View Article and Find Full Text PDF

A structure-activity relationship investigation of various 6-(azaindol-2-yl)pyridine-3-sulfonamides using the HCV replicon cell culture assay led to the identification of a potent series of 7-azaindoles that target the hepatitis C virus NS4B. Compound 2ac, identified via further optimization of the series, has excellent potency against the HCV 1b replicon with an EC50 of 2nM and a selectivity index of >5000 with respect to cellular GAPDH RNA. Compound 2ac also has excellent oral plasma exposure levels in rats, dogs and monkeys and has a favorable liver to plasma distribution profile in rats.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality.

View Article and Find Full Text PDF

A novel, potent, and orally bioavailable inhibitor of hepatitis C RNA replication targeting NS4B, compound 4t (PTC725), has been identified through chemical optimization of the 6-(indol-2-yl)pyridine-3-sulfonamide 2 to improve DMPK and safety properties. The focus of the SAR investigations has been to identify the optimal combination of substituents at the indole N-1, C-5, and C-6 positions and the sulfonamide group to limit the potential for in vivo oxidative metabolism and to achieve an acceptable pharmacokinetic profile. Compound 4t has excellent potency against the HCV 1b replicon, with an EC50 = 2 nM and a selectivity index of >5000 with respect to cellular GAPDH.

View Article and Find Full Text PDF

A novel series of 6-(indol-2-yl)pyridine-3-sulfonamides was prepared and evaluated for their ability to inhibit HCV RNA replication in the HCV replicon cell culture assay. Preliminary optimization of this series furnished compounds with low nanomolar potency against the HCV genotype 1b replicon. Among these, compound 8c has identified as a potent HCV replicon inhibitor (EC50=4 nM) with a selectivity index with respect to cellular GAPDH of more than 2500.

View Article and Find Full Text PDF

A series of novel 2-phenylindole analogs were synthesized and evaluated for activity in subgenomic HCV replicon inhibition assays. Several compounds containing small alkyl sulfonamides on the phenyl ring exhibiting submicromolar EC50 values against the genotype 1b replicon were identified. Among these, compound 25d potently inhibited the 1b replicon (EC50=0.

View Article and Find Full Text PDF

While new direct-acting antiviral agents for the treatment of chronic hepatitis C virus (HCV) infection have been approved, there is a continued need for novel antiviral agents that act on new targets and can be used in combination with current therapies to enhance efficacy and to restrict the emergence of drug-resistant viral variants. To this end, we have identified a novel class of small molecules, exemplified by PTC725, that target the nonstructural protein 4B (NS4B). PTC725 inhibited HCV 1b (Con1) replicons with a 50% effective concentration (EC50) of 1.

View Article and Find Full Text PDF

Professor Erik De Clercq, recent recipient of the International Society for Antiviral Research (ISAR) 'Outstanding Contributions to the Society Award', recounts 25 years of antiviral research collaborating with his colleagues and friends in Japan.

View Article and Find Full Text PDF