Achieving the full control over the production as well as processability of high-quality graphene represents a major challenge with potential interest in the field of fabrication of multifunctional devices. The outstanding effort dedicated to tackle this challenge in the last decade revealed that certain organic molecules are capable of leveraging the exfoliation of graphite with different efficiencies. Here, a fundamental understanding on a straightforward supramolecular approach for producing homogenous dispersions of unfunctionalized and non-oxidized graphene nanosheets in four different solvents is attained, namely N-methyl-2-pyrrolidinone, N,N-dimethylformamide, ortho-dichlorobenzene, and 1,2,4-trichlorobenzene.
View Article and Find Full Text PDFThe technological exploitation of the extraordinary properties of graphene relies on the ability to achieve full control over the production of a high-quality material and its processing by up-scalable approaches in order to fabricate large-area films with single-layer or a few atomic-layer thickness, which might be integrated in working devices. A simple method is reported for producing homogenous dispersions of unfunctionalized and non-oxidized graphene nanosheets in N-methyl-2-pyrrolidone (NMP) by using simple molecular modules, which act as dispersion-stabilizing compounds during the liquid-phase exfoliation (LPE) process, leading to an increase in the concentration of graphene in dispersions. The LPE-processed graphene dispersion was shown to be a conductive ink.
View Article and Find Full Text PDF