Publications by authors named "Joseph Cherian"

The optimization of hit compounds into drug candidates is a pivotal phase in drug discovery but often hampered by cumbersome manual synthesis of derivatives. While automated organic molecule synthesis has enhanced efficiency, safety, and cost-effectiveness, achieving fully automated multistep synthesis remains a formidable challenge due to issues such as solvent and reagent incompatibilities and the accumulation of side-products. We herein demonstrate an automated solid-phase flow platform for synthesizing α-keto-amides and nitrile peptidomimetics, guided by docking simulations, to identify potent broad-spectrum antiviral leads.

View Article and Find Full Text PDF

Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion.

View Article and Find Full Text PDF

UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using F-nuclear magnetic resonance (NMR) and validated the hits with H- N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies.

View Article and Find Full Text PDF

UBE2T is an E2 ubiquitin ligase critical for ubiquitination of substrate and plays important roles in many diseases. Despite the important function, UBE2T is considered as an undruggable target due to lack of a pocket for binding to small molecules with satisfied properties for clinical applications. To develop potent and specific UBE2T inhibitors, we adopted a high-throughput screening assay and two compounds-ETC-6152 and ETC-9004 containing a sulfone tetrazole scaffold were identified.

View Article and Find Full Text PDF

The atypical protein kinase C-iota (PKC-ι) enzyme is implicated in various cancers and has been put forward as an attractive target for developing anticancer therapy. A high concentration biochemical screen identified pyridine fragment weakly inhibiting PKC-ι with IC = 424 μM. Driven by structure-activity relationships and guided by docking hypothesis, the weakly bound fragment was eventually optimized into a potent inhibitor of PKC-ι (IC= 270 nM).

View Article and Find Full Text PDF

Even though many GyrB and ParE inhibitors have been reported in the literature, few possess activity against Gram-negative bacteria. This is primarily due to limited permeability across Gram-negative bacterial membrane as well as bacterial efflux mechanisms. Permeability of compounds across Gram-negative bacterial membranes depends on many factors including physicochemical properties of the inhibitors.

View Article and Find Full Text PDF

Overexpression of the eukaryotic initiation factor 4E (eIF4E) is linked to a variety of cancers. Both mitogen-activated protein kinases-interacting kinases 1 and 2 (Mnk1/2) activate the oncogene eIF4E through posttranslational modification (phosphorylating it at the conserved Ser209). Inhibition of Mnk prevents eIF4E phosphorylation, making the Mnk-eIF4E axis a potential therapeutic target for oncology.

View Article and Find Full Text PDF

Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.

View Article and Find Full Text PDF

Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV.

View Article and Find Full Text PDF

Clinically used BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia do not eliminate leukemic stem cells (LSC). It has been shown that MNK1 and 2 inhibitors prevent phosphorylation of eIF4E and eliminate the self-renewal capacity of LSCs. Herein, we describe the identification of novel dual MNK1 and 2 and BCR-ABL1 inhibitors, starting from the known kinase inhibitor 2.

View Article and Find Full Text PDF

Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria has proven challenging.

View Article and Find Full Text PDF

Bacterial topoisomerase IV (ParE) is essential for DNA replication and serves as an attractive target for antibacterial drug development. The X-ray structure of the N-terminal 24 kDa ParE, responsible for ATP binding has been solved. Due to the accessibility of structural information of ParE, many potent ParE inhibitors have been discovered.

View Article and Find Full Text PDF

The N-terminal ATP binding domain of the DNA gyrase B subunit is a validated drug target for antibacterial drug discovery. Structural information for this domain (pGyrB) from Pseudomonas aeruginosa is still missing. In this study, the interaction between pGyrB and a bis-pyridylurea inhibitor was characterized using several biophysical methods.

View Article and Find Full Text PDF

PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies.

View Article and Find Full Text PDF

Background: Myocardial injury after noncardiac surgery (MINS) was defined as prognostically relevant myocardial injury due to ischemia that occurs during or within 30 days after noncardiac surgery. The study's four objectives were to determine the diagnostic criteria, characteristics, predictors, and 30-day outcomes of MINS.

Methods: In this international, prospective cohort study of 15,065 patients aged 45 yr or older who underwent in-patient noncardiac surgery, troponin T was measured during the first 3 postoperative days.

View Article and Find Full Text PDF

Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis remains a significant global health issue, prompting interest in bicyclic nitroimidazoles as a novel therapeutic class.
  • The deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis plays a crucial role in activating these drugs by producing harmful reactive nitrogen species.
  • Research has focused on the structural characteristics of Ddn, revealing key insights into its function and interaction with therapeutics like PA-824, highlighting the importance of specific amino acids for drug binding.
View Article and Find Full Text PDF
Article Synopsis
  • Bicyclic 4-nitroimidazoles, specifically PA-824 and OPC-67683, are promising new drugs for tuberculosis currently in phase II clinical trials, functioning as pro-drugs activated by the enzyme Ddn.
  • Ddn shows a preference for the (S) isomer of PA-824 due to its longer hydrophobic tail, while it can reduce compounds with shorter substituents without stereochemical preference, demonstrating stereospecificity with bulkier substitutions.
  • The study reveals that (R)-PA-824 binds to Ddn with the same affinity as the active (S) isomer, but likely uses a different binding mode, highlighting key structural features that aid in understanding enzyme-substrate interactions
View Article and Find Full Text PDF

The (S)-2-nitro-6-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine named PA-824 (1) has demonstrated antitubercular activity in vitro and in animal models and is currently in clinical trials. We synthesized derivatives at three positions of the 4-(trifluoromethoxy)benzylamino tail, and these were tested for whole-cell activity against both replicating and nonreplicating Mycobacterium tuberculosis (Mtb). In addition, we determined their kinetic parameters as substrates of the deazaflavin-dependent nitroreductase (Ddn) from Mtb that reductively activates these pro-drugs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the prevalence of dementia and Alzheimer's Disease (AD) in Kerala, South India, revealing significant rates among the aging population.
  • Findings show that 3.77% of individuals aged 55 and older and 4.86% of those aged 65 and older were diagnosed with dementia, with higher rates observed in older and less-educated individuals.
  • The research concludes that dementia and AD are more common in Kerala than previously recognized, with increased age and low education being risk factors for dementia, while female gender is associated with a higher prevalence of AD.
View Article and Find Full Text PDF

Determining the health of muscle cells by in vivo imaging could impact the diagnosis and monitoring of a large number of congenital and acquired muscular or cardiac disorders. However, currently used technologies are hampered by insufficient resolution, lack of specificity, or invasiveness. We have combined intrinsic optical second-harmonic generation from sarcomeric myosin with a novel mathematical treatment of striation pattern analysis, to obtain measures of muscle contractile integrity that correlate strongly with the neuromuscular health of mice suffering from genetic, acquired, and age-related decline in skeletal muscle function.

View Article and Find Full Text PDF

Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance.

View Article and Find Full Text PDF

Objective: To derive population norms on the Malayalam adaptation of Addenbrooke's Cognitive Examination (M-ACE) and the inclusive Malayalam mini mental state examination (M-MMSE).

Materials And Methods: Education-stratified norms were obtained on randomly selected cognitively unimpaired community elders (n = 519).

Results: Valid data on norms was available on 488 subjects (age 68.

View Article and Find Full Text PDF

Cell-permeable small molecules that inhibit their targets on fast timescales are powerful probes of cell-division mechanisms. Such inhibitors have been identified using phenotype-based screens with chemical libraries. However, the characteristics of compound libraries needed to effectively span cell-division phenotype space, to find probes that target different mechanisms, are not known.

View Article and Find Full Text PDF