Publications by authors named "Joseph C Tilly"

Thermoplastic elastomers (TPEs) composed of nonpolar triblock copolymers constitute a broadly important class of (re)processable network-forming macromolecules employed in ubiquitous commercial applications. Physical gelation of these materials in the presence of a low-volatility oil that is midblock-selective yields tunably soft TPE gels (TPEGs) that are suitable for emergent technologies ranging from electroactive, phase-change and shape-memory responsive media to patternable soft substrates for flexible electronics and microfluidics. Many of the high-volume TPEs used for these purposes possess styrenic endblocks that are inherently limited by a relatively low glass transition temperature.

View Article and Find Full Text PDF

The sol-gel transition of a series of polyester polyol resins possessing varied secondary hydroxyl content and reacted with a polymerized aliphatic isocyanate cross-linking agent is studied to elucidate the effect of molecular architecture on cure behavior. Dynamic rheology is utilized in conjunction with time-resolved variable-temperature Fourier-transform infrared spectroscopy to examine the relationship between chemical conversion and microstructural evolution as functions of both time and temperature. The onset of a percolated microstructure is identified for all resins, and apparent activation energies extracted from Arrhenius analyses of gelation and average reaction kinetics are found to depend on the secondary hydroxyl content in the polyester polyols.

View Article and Find Full Text PDF

Block ionomers can, in the same fashion as their neutral block copolymer analogs, microphase-order into various nanoscale morphologies. The added benefit of a copolymer possessing a charged species is that the resultant block ionomer becomes amphiphilic and capable of imbibing polar liquids, including water. This characteristic facilitates incorporation of metallic species into the soft nanostructure for a wide range of target applications.

View Article and Find Full Text PDF