Publications by authors named "Joseph C Onyiah"

Neutrophils (polymorphonuclear leukocytes, PMNs) comprise a major component of the immune cell infiltrate during acute mucosal inflammation and have an important role in molding the inflammatory tissue environment. While PMNs are essential to clearance of invading microbes, the major PMN antimicrobial enzyme myeloperoxidase (MPO) can also promote bystander tissue damage. We hypothesized that blocking MPO would attenuate acute colitis and prevent the development of chronic colitis by limiting bystander tissue damage.

View Article and Find Full Text PDF

Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • - Tofacitinib is the only approved Janus kinase (JAK) inhibitor for treating moderate-to-severely active ulcerative colitis (UC).
  • - The effectiveness of other JAK inhibitors for UC is still not well researched.
  • - A case study highlights the successful treatment of a patient with both UC and polycythemia vera using ruxolitinib, a selective JAK inhibitor.
View Article and Find Full Text PDF

Heme metabolism is a key regulator of inflammatory responses. Cobalt protoporphyrin IX (CoPP) is a heme analog and mimic that potently activates the NRF2/heme oxygenase-1 (HO-1) pathway, especially in monocytes and macrophages. We investigated the influence of CoPP on inflammatory responses using a murine model of colitis.

View Article and Find Full Text PDF

Metabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation.

View Article and Find Full Text PDF

During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response.

View Article and Find Full Text PDF

Background: Inflammation results in significant shifts in tissue metabolism. Recent studies indicate that inflammation and hypoxia occur concomitantly. We examined whether circulating and tissue markers of hypoxia could serve as surrogate indicators of disease severity in adult and pediatric patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Acute intestinal inflammation includes the early accumulation of neutrophils (PMN). Based on recent evidence that PMN infiltration "imprints" changes in the local tissue environment through local oxygen depletion and the release of adenine nucleotides, we hypothesized that the interaction between transmigrating PMN and intestinal epithelial cells (IECs) results in inflammatory acidification of the tissue. Using newly developed tools, we revealed that active PMN transepithelial migration (TEM) significantly acidifies the local microenvironment, a decrease of nearly 2 pH units.

View Article and Find Full Text PDF

In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated.

View Article and Find Full Text PDF

Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation.

View Article and Find Full Text PDF

Recent work has revealed a central role for neddylation (the conjugation of a Nedd8-moiety to Cullin proteins) in the fine tuning of the NF-κB response (via Cullin-1). In the present study, we investigated the contribution of Cullin-1 neddylation and NF-κB signaling to mucosal inflammatory responses in vitro and in vivo. Initial in vitro studies using cultured intestinal epithelial cells revealed that the neddylation inhibitor MLN4924 prominently induces the deneddylation of Cullin-1.

View Article and Find Full Text PDF

Inflammatory diseases of mucosal organs are significantly influenced by the microenvironment in which they reside. Cytokines found within this microenvironment contribute significantly to endpoint functions of the mucosa. Studies dating back to the 1990s have revealed that epithelial cells are both a source as well as a target for numerous cytokines and that such signaling can substantially influence the outcome of mucosal disease, such as inflammatory bowel disease.

View Article and Find Full Text PDF

Induction of mammalian heme oxygenase (HO)-1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO-like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho-like molecules suppress inflammatory immune responses through release of CO.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) and its enzymatic by-product carbon monoxide (CO) have emerged as important regulators of acute and chronic inflammation. Mechanisms underlying their anti-inflammatory effects are only partially understood. In this addendum, we summarize current understanding of the role of the HO-1/CO pathway in regulation of intestinal inflammation with a focus on innate immune function.

View Article and Find Full Text PDF

Background & Aims: Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish.

Methods: Germ-free, wild-type, and interleukin (Il)10(-/-) mice and germ-free zebrafish embryos were colonized with specific pathogen-free (SPF) microbiota.

View Article and Find Full Text PDF

Cigarette smoking is a significant environmental factor in the human inflammatory bowel diseases, remarkably, conferring protection in ulcerative colitis. We previously demonstrated that a prominent component of cigarette smoke, CO, suppresses Th17-mediated experimental colitis in IL-10(-/-) mice through a heme oxygenase (HO)-1-dependent pathway. In this study, homeostatic and therapeutic effects of CO and HO-1 were determined in chronic colonic inflammation in TCR-α-deficient ((-/-)) mice, in which colitis is mediated by Th2 cytokines, similar to the cytokine milieu described in human ulcerative colitis.

View Article and Find Full Text PDF

We have demonstrated previously that IFN-γ plays a protective role in the initiation of chronic intestinal inflammation through attenuation of Toll-like receptor-mediated IL-23 induction in macrophages. Here, an interferon-stimulated response element (ISRE) is identified in a region of conserved nucleotide sequences in the Il23a promoter. This ISRE mediated, in part, Il23a promoter induction by LPS and inhibition of LPS-induced activity by IFN-γ.

View Article and Find Full Text PDF