Seizures induce excitatory shifts in the reversal potential for GABA(A)-receptor-mediated responses, which may contribute to the intractability of electro-encephalographic seizures and preclude the efficacy of widely used GABAergic anticonvulsants such as phenobarbital. We now report that, in intact hippocampi prepared from neonatal rats and transgenic mice expressing Clomeleon, recurrent seizures progressively increase the intracellular chloride concentration ([Cl(-)](i)) assayed by Clomeleon imaging and invert the net effect of GABA(A) receptor activation from inhibition to excitation assayed by the frequency of action potentials and intracellular Ca(2+) transients. These changes correlate with increasing frequency of seizure-like events and reduction in phenobarbital efficacy.
View Article and Find Full Text PDF