Major impediments to conveyance of intravenously administered drugs to tumors are biofouling, opsonization, and rapid clearance from the circulation by macrophages and reticuloendothelial phagocytes. Cloaking nanoparticles with stealth epilayers partly overcomes these hurdles but it also foils interactions with tumor cells. Here, we describe the synthesis, characterization, and validation of smart gold nanorods (GNRs) that spontaneously transform from inert passengers in the blood stream to active cell-penetrating nanoparticles within tumors to potently sensitize tumors to radiation therapy.
View Article and Find Full Text PDFPurpose: The excellent contrast of high atomic number () elements compared to soft tissues has advanced their use as contrast agents for computed tomographic imaging and as potential radiation sensitizers. We evaluated whether gadolinium (Gd) could serve as such a theranostic agent for high-resolution magnetic resonance imaging (MRI) due to its paramagnetic properties and radiosensitization due to its high Z.
Materials And Methods: To improve the relaxivity of Gd, we coupled it to [60]fullerene, an elemental carbon allotropic nanoparticle that seamlessly traverses physiological barriers .