Publications by authors named "Joseph Bucukovski"

Wearable, mobile, and point-of-care (POC) sensors comprise a rapidly expanding field of devices aimed at improving human health by relaying real-time biometric data such as heart rate and glucose levels. The current scope of what these devices can offer healthcare is limited by their inability to measure biomarkers associated with inflammation, well-being, and disease. Photonic biosensors that integrate sensing elements directly with spectrometers, lasers, and detectors are an attractive approach to enabling POC sensors, with distinct advantages in terms of size, weight, power consumption, and cost.

View Article and Find Full Text PDF

Detection of antibodies to upper respiratory pathogens is critical to surveillance, assessment of the immune status of individuals, vaccine development, and basic biology. The urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR) platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating coronavirus strains (HKU1, 229E, OC43) and three strains of influenza.

View Article and Find Full Text PDF

Rapid changes in influenza A virus (IAV) antigenicity create challenges in surveillance, disease diagnosis, and vaccine development. Further, serological methods for studying antigenic properties of influenza viruses often rely on animal models and therefore may not fully reflect the dynamics of human immunity. We hypothesized that arrays of human monoclonal antibodies (hmAbs) to influenza could be employed in a pattern-recognition approach to expedite IAV serology and to study the antigenic evolution of newly emerging viruses.

View Article and Find Full Text PDF

Multiplex assays for autoantibodies have shown utility both in research towards understanding the basic biology of autoimmune disease, and as tools for clinical diagnosis. New label-free multiplex analysis methods have the potential to streamline both the process of assay development and assay workflow. We report fabrication and testing of a 5-plex autoantigen microarray using the Arrayed Imaging Reflectometry (AIR) platform.

View Article and Find Full Text PDF

Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform.

View Article and Find Full Text PDF