Publications by authors named "Joseph Betthauser"

Objective: Our study defines a novel electrode placement method called Functionally Adaptive Myosite Selection (FAMS), as a tool for rapid and effective electrode placement during prosthesis fitting. We demonstrate a method for determining electrode placement that is adaptable towards individual patient anatomy and desired functional outcomes, agnostic to the type of classification model used, and provides insight into expected classifier performance without training multiple models.

Methods: FAMS relies on a separability metric to rapidly predict classifier performance during prosthesis fitting.

View Article and Find Full Text PDF

Unlabelled: Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior.

Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance.

View Article and Find Full Text PDF

The human body is a template for many state-of-the-art prosthetic devices and sensors. Perceptions of touch and pain are fundamental components of our daily lives that convey valuable information about our environment while also providing an element of protection from damage to our bodies. Advances in prosthesis designs and control mechanisms can aid an amputee's ability to regain lost function but often lack meaningful tactile feedback or perception.

View Article and Find Full Text PDF

Myoelectric signal patterns can be used to predict the intended movements of amputees for prosthesis activation. Real-world prosthesis use introduces a variety of unpredictable conditional influences on these patterns, hindering the performance of classification algorithms and potentially leading to device abandonment. We have discovered a state-of-the-art classification method which is significantly more tolerant to these conditional influences.

View Article and Find Full Text PDF

In this work, we investigated the use of noninvasive, targeted transcutaneous electrical nerve stimulation (TENS) of peripheral nerves to provide sensory feedback to two amputees, one with targeted sensory reinnervation (TSR) and one without TSR. A major step in developing a closed-loop prosthesis is providing the sense of touch back to the amputee user. We investigated the effect of targeted nerve stimulation amplitude, pulse width, and frequency on stimulation perception.

View Article and Find Full Text PDF

Unlabelled: Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment.

View Article and Find Full Text PDF

The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin.

View Article and Find Full Text PDF

The fundamental objective in non-invasive myoelectric prosthesis control is to determine the user's intended movements from corresponding skin-surface recorded electromyographic (sEMG) activation signals as quickly and accurately as possible. Linear Discriminant Analysis (LDA) has emerged as the de facto standard for real-time movement classification due to its ease of use, calculation speed, and remarkable classification accuracy under controlled training conditions. However, performance of cluster-based methods like LDA for sEMG pattern recognition degrades significantly when real-world testing conditions do not resemble the trained conditions, limiting the utility of myoelectrically controlled prosthesis devices.

View Article and Find Full Text PDF