Circadian clocks generate rhythms of arousal, but the underlying molecular and cellular mechanisms remain unclear. In Drosophila, the clock output molecule WIDE AWAKE (WAKE) labels rhythmic neural networks and cyclically regulates sleep and arousal. Here, we show, in a male mouse model, that mWAKE/ANKFN1 labels a subpopulation of dorsomedial hypothalamus (DMH) neurons involved in rhythmic arousal and acts in the DMH to reduce arousal at night.
View Article and Find Full Text PDFChronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation. To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss). Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction.
View Article and Find Full Text PDFSleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in , we discovered a novel short-sleep mutant we named . Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep.
View Article and Find Full Text PDFAnnu Rev Cell Dev Biol
October 2020
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling.
View Article and Find Full Text PDFCircadian disruption has multiple pathological consequences, but the underlying mechanisms are largely unknown. To address such mechanisms, we subjected transformed cultured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag scheme, and assayed a range of cellular functions. The results indicated a specific circadian clock-dependent increase in cell proliferation.
View Article and Find Full Text PDFThe suprachiasmatic nucleus (SCN) is the neural network that drives daily rhythms in behavior and physiology. The SCN encodes environmental changes through the phasing of cellular rhythms across its anteroposterior axis, but it remains unknown what signaling mechanisms regulate clock function along this axis. Here we demonstrate that arginine vasopressin (AVP) signaling organizes the SCN into distinct anteroposterior domains.
View Article and Find Full Text PDFNeuropsychopharmacology
July 2017
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior.
View Article and Find Full Text PDFThe suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16].
View Article and Find Full Text PDFStudy Objectives: Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity.
View Article and Find Full Text PDFThe circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
May 2016
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate.
View Article and Find Full Text PDFHypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes.
View Article and Find Full Text PDFVertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN.
View Article and Find Full Text PDFHow the circadian clock regulates the timing of sleep is poorly understood. Here, we identify a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of WAKE in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset.
View Article and Find Full Text PDFAdult hypothalamic neurogenesis has recently been reported, but the cell of origin and the function of these newborn neurons are unknown. Using genetic fate mapping, we found that median eminence tanycytes generate newborn neurons. Blocking this neurogenesis altered the weight and metabolic activity of adult mice.
View Article and Find Full Text PDFOptic nerve head (ONH) astrocytes have been proposed to play both protective and deleterious roles in glaucoma. We now show that, within the postlaminar ONH myelination transition zone (MTZ), there are astrocytes that normally express Mac-2 (also known as Lgals3 or galectin-3), a gene typically expressed only in phagocytic cells. Surprisingly, even in healthy mice, MTZ and other ONH astrocytes constitutive internalize large axonal evulsions that contain whole organelles.
View Article and Find Full Text PDFFear learning is associated with changes in synapse strength in the lateral amygdala (LA). To examine changes in LA dendritic spine structure with learning, we used serial electron microscopy to re-construct dendrites after either fear or safety conditioning. The spine apparatus, a smooth endoplasmic reticulum (sER) specialization found in very large spines, appeared more frequently after fear conditioning.
View Article and Find Full Text PDF