Publications by authors named "Joseph B Rucker"

The tight junction protein claudin 6 (CLDN6) is differentially expressed on cancer cells with almost no expression in healthy tissue. However, achieving therapeutic MAb specificity for this 4 transmembrane protein is challenging because it is nearly identical to the widely expressed CLDN9, with only 3 extracellular amino acids different. Most other CLDN6 MAbs, including those in clinical development are cross-reactive with CLDN9, and several trials have now been stopped.

View Article and Find Full Text PDF

The chemokine receptor CXCR4 and its ligand CXCL12 contribute to a variety of human diseases, such as cancer. CXCR4 is also a major co-receptor facilitating HIV entry. Accordingly, CXCR4 is considered as an attractive therapeutic target.

View Article and Find Full Text PDF

The insulin-responsive 12-transmembrane transporter GLUT4 changes conformation between an inward-open state and an outward-open state to actively facilitate cellular glucose uptake. Because of the difficulties of generating conformational mAbs against complex and highly conserved membrane proteins, no reliable tools exist to measure GLUT4 at the cell surface, follow its trafficking, or detect the conformational state of the protein. Here we report the isolation and characterization of conformational mAbs that recognize the extracellular and intracellular domains of GLUT4, including mAbs that are specific for the inward-open and outward-open states of GLUT4.

View Article and Find Full Text PDF

Although bitter taste receptors (TAS2Rs) are important for human health, little is known of the determinants of ligand specificity. TAS2Rs such as TAS2R16 help define gustatory perception and dietary preferences that ultimately influence human health and disease. Each TAS2R must accommodate a broad diversity of chemical structures while simultaneously achieving high specificity so that diverse bitter toxins can be detected without all foods tasting bitter.

View Article and Find Full Text PDF

The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding.

View Article and Find Full Text PDF

Unlabelled: Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epitope conservation, and epitope accessibility—also remain largely unknown.

View Article and Find Full Text PDF

Background: Domestic cats (felis catus) have a reputation for being rather unpredictable in their dietary choices. While their appetite for protein or savory flavors is consistent with their nutritional needs, their preference among protein-sufficient dietary options may relate to differences in the response to other flavor characteristics. Studies of domestic cat taste perception are limited, in part, due to the lack of receptor sequence information.

View Article and Find Full Text PDF

In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP.

View Article and Find Full Text PDF

Unlabelled: Chikungunya virus (CHIKV) is a reemerging alphavirus that causes a debilitating arthritic disease and infects millions of people and for which no specific treatment is available. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1.

View Article and Find Full Text PDF

Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa.

View Article and Find Full Text PDF

The mosquito-borne alphavirus, chikungunya virus (CHIKV), has recently reemerged, producing the largest epidemic ever recorded for this virus, with up to 6.5 million cases of acute and chronic rheumatic disease. There are currently no licensed vaccines for CHIKV and current anti-inflammatory drug treatment is often inadequate.

View Article and Find Full Text PDF

The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function.

View Article and Find Full Text PDF

To better understand how detergents disrupt enveloped viruses, we monitored the biophysical stability of murine leukemia virus (MLV) virus-like particles (VLPs) against a panel of commonly used detergents using real-time biosensor measurements. Although exposure to many detergents, such as Triton X-100 and Empigen, results in lysis of VLP membranes, VLPs appeared resistant to complete membrane lysis by a significant number of detergents, including Tween 20, Tween 80, Lubrol, and Saponin. VLPs maintained their structural integrity after exposure to Tween 20 at concentrations up to 500-fold above its CMC.

View Article and Find Full Text PDF

Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC).

View Article and Find Full Text PDF

Epitopes that define the immunodominant regions of conformationally complex integral membrane proteins have been difficult to reliably delineate. Here, a high-throughput approach termed shotgun mutagenesis was used to map the binding epitopes of five different monoclonal antibodies targeting the GPCR CCR5. The amino acids, and in some cases the atoms, that comprise the critical contact points of each epitope were identified, defining the immunodominant structures of this GPCR and their physicochemistry.

View Article and Find Full Text PDF