Despite entering an endemic phase, SARS-CoV-2 remains a significant burden to public health across the global community. Wastewater sampling has consistently proven utility to understanding SARS-CoV-2 prevalence trends and genetic variation as it represents a less biased assessment of the corresponding communities. Here, we report that ongoing monitoring of SARS-CoV-2 genetic variation in samples obtained from the wastewatersheds of the city of Louisville in Jefferson county Kentucky has revealed the periodic reemergence of the Delta strain in the presence of the presumed dominant Omicron strain.
View Article and Find Full Text PDFThis study aimed to develop a framework for combining community wastewater surveillance with state clinical surveillance for the confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants within the community and to provide recommendations on how to expand on such research and apply the findings in public health responses. Wastewater samples were collected weekly from 17 geographically resolved locations in Louisville/Jefferson County, Kentucky (USA), from February 10 to December 13, 2021. Genomic surveillance and quantitative reverse transcription PCR (RT-qPCR) platforms were used to screen for SARS-CoV-2 in wastewater, and state clinical surveillance was used for confirmation.
View Article and Find Full Text PDFExcitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes.
View Article and Find Full Text PDFCirculation
December 2022
Background: Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for high- and intermediate-risk patients with severe symptomatic aortic valve stenosis. A majority of patients exhibit improvements in left ventricular ejection fraction (LVEF) after TAVR in response to TAVR-associated afterload reduction. However, a specific role for circulating microRNAs (miRNAs) in the improvement of cardiac function for patients after TAVR has not yet been investigated.
View Article and Find Full Text PDFScientific advancement is predicated upon the ability of a novel discovery to be independently reproduced and substantiated by others. Despite this inherent necessity, the research community is awash in published studies that cannot be replicated resulting in widespread confusion within the field and waning trust from the general public. In many cases, irreproducibility is the unavoidable consequence of a study that is conducted without the appropriate degree of rigor, typified by fundamental flaws in approach, design, execution, analysis, interpretation, and reporting.
View Article and Find Full Text PDFAdequate oxygen delivery to the heart during stress is essential for sustaining cardiac function. Acute increases in myocardial oxygen demand evoke coronary vasodilation and enhance perfusion via functional upregulation of smooth muscle voltage-gated K (Kv) channels. Because this response is controlled by Kv1 accessory subunits (i.
View Article and Find Full Text PDFAlthough cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration-suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties.
View Article and Find Full Text PDFChronic inflammation is inextricably linked to cardiovascular disease (CVD). Macrophages themselves play important roles in atherosclerosis, as well as acute and chronic heart failure. Although the role of macrophages in CVD pathophysiology is well-recognized, little is known regarding the precise mechanisms influencing their function in these contexts.
View Article and Find Full Text PDFPurpose Of Review: Mounting evidence suggests that long noncoding RNAs (lncRNAs) are essential regulators of gene expression. Although few lncRNAs have been the subject of detailed molecular and functional characterization, it is believed that lncRNAs play an important role in tissue homeostasis and development. In fact, gene expression profiling studies reveal lncRNAs are developmentally regulated in a tissue-type and cell-type specific manner.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated ("induced" or "reprogrammed") in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2020
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities.
View Article and Find Full Text PDFWhile the fundamental mechanism by which cardiac cell therapy mitigates ventricular dysfunction in the post ischemic heart remains poorly defined, donor cell paracrine signaling is presumed to be a chief contributor to the afforded benefits. Of the many bioactive molecules secreted by transplanted cells, extracellular vesicles (EVs) and their proteinaceous, nucleic acid, and lipid rich contents, comprise a heterogeneous assortment of prospective cardiotrophic factors-whose involvement in the activation of endogenous cardiac repair mechanism(s), including reducing fibrosis and promoting angiogenesis, have yet to be fully explained. In the current study we aimed to interrogate potential mechanisms by which cardiac mesenchymal stromal cell (CMC)-derived EVs contribute to the CMC pro-angiogenic paracrine signaling capacity in vitro.
View Article and Find Full Text PDFPreclinical investigations support the concept that donor cells more oriented towards a cardiovascular phenotype favor repair. In light of this philosophy, we previously identified HDAC1 as a mediator of cardiac mesenchymal cell (CMC) cardiomyogenic lineage commitment and paracrine signaling potency in vitro-suggesting HDAC1 as a potential therapeutically exploitable target to enhance CMC cardiac reparative capacity. In the current study, we examined the effects of pharmacologic HDAC1 inhibition, using the benzamide class 1 isoform-selective HDAC inhibitor entinostat (MS-275), on CMC cardiomyogenic lineage commitment and CMC-mediated myocardial repair in vivo.
View Article and Find Full Text PDFRationale: Increasing evidence indicates the presence of lncRNAs in various cell types. is an imprinting gene transcribed from the paternal chromosome. It is in antisense orientation to the imprinted, but maternally derived, gene, on which exerts its regulation in .
View Article and Find Full Text PDFBackground: Cardiac mesenchymal cell (CMC) administration improves cardiac function in animal models of heart failure. Although the precise mechanisms remain unclear, transdifferentiation and paracrine signaling are suggested to underlie their cardiac reparative effects. We have shown that histone deacetylase 1 (HDAC1) inhibition enhances CMC cardiomyogenic lineage commitment.
View Article and Find Full Text PDFBackground: The authors previously reported that the c-kit-positive (c-kit) cells isolated from slowly adhering (SA) but not from rapidly adhering (RA) fractions of cardiac mesenchymal cells (CMCs) are effective in preserving left ventricular (LV) function after myocardial infarction (MI).
Objectives: This study evaluated whether adherence to plastic alone, without c-kit sorting, was sufficient to isolate reparative CMCs.
Methods: RA and SA CMCs were isolated from mouse hearts, expanded in vitro, characterized, and evaluated for therapeutic efficacy in mice subjected to MI.
Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs).
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous free radical molecule involved in several biological processes related to inflammation, tissue damage, and infections. Based on reports that NO inhibits migration of granulocytes and monocytes, we became interested in the role of inducible NO synthetase (iNOS) in pharmacological mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). To address the role of NO in HSPC trafficking, we upregulated or downregulated iNOS expression in hematopoietic cell lines.
View Article and Find Full Text PDF