The facile inoculum delivery and handling of the insect Galleria mellonella make it a desirable model for the study of fungal pathogenesis. Here we present methods to study fungal virulence, filamentation and fungal cell associates with insect hemocytes using Candida albicans and Cryptococcus neoformans to illustrate the use of this model. The two types of fungi cause distinct infections thus we compare and contrast the infection characteristics observed in G.
View Article and Find Full Text PDFCandida albicans is an important cause of morbidity in hospitalized and immunosuppressed patients. Virulence factors of C. albicans include: filamentation, proteinases, adherence proteins and biofilm formation.
View Article and Find Full Text PDFThe pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization.
View Article and Find Full Text PDFEvaluation of Cryptococcus neoformans virulence in a number of nonmammalian hosts suggests that C. neoformans is a nonspecific pathogen. We used the killing of Galleria mellonella (the greater wax moth) caterpillar by C.
View Article and Find Full Text PDFThe self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36.
View Article and Find Full Text PDFAccumulation of inflammatory microglia in Alzheimer's senile plaques is a hallmark of the innate response to beta-amyloid fibrils and can initiate and propagate neurodegeneration characteristic of Alzheimer's disease (AD). The molecular mechanism whereby fibrillar beta-amyloid activates the inflammatory response has not been elucidated. CD36, a class B scavenger receptor, is expressed on microglia in normal and AD brains and binds to beta-amyloid fibrils in vitro.
View Article and Find Full Text PDFAm J Pathol
January 2002
A pathological hallmark of Alzheimer's disease is the senile plaque, composed of beta-amyloid fibrils, microglia, astrocytes, and dystrophic neurites. We reported previously that class A scavenger receptors mediate adhesion of microglia and macrophages to beta-amyloid fibrils and oxidized low-density lipoprotein (oxLDL)-coated surfaces. We also showed that CD36, a class B scavenger receptor and an oxLDL receptor, promotes H(2)O(2) secretion by macrophages adherent to oxLDL-coated surfaces.
View Article and Find Full Text PDF