Am J Epidemiol
October 2024
Causal inference for air pollution mixtures is an increasingly important issue with appreciable challenges. When the exposure is a multivariate mixture, there are many exposure contrasts that may be of nominal interest for causal effect estimation, but the complex joint mixture distribution often renders observed data extremely limited in their ability to inform estimates of many commonly defined causal effects. We use potential outcomes to (1) define causal effects of air pollution mixtures, (2) formalize the key assumption of mixture positivity required for estimation, and (3) offer diagnostic metrics for positivity violations in the mixture setting that allow researchers to assess the extent to which data can actually support estimation of mixture effects of interest.
View Article and Find Full Text PDFWe propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We develop a frequentist inferential procedure that utilizes posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification and provides a consistent variance estimator when both models are correctly specified.
View Article and Find Full Text PDFDistributed lag models are useful in environmental epidemiology as they allow the user to investigate critical windows of exposure, defined as the time periods during which exposure to a pollutant adversely affects health outcomes. Recent studies have focused on estimating the health effects of a large number of environmental exposures, or an environmental mixture, on health outcomes. In such settings, it is important to understand which environmental exposures affect a particular outcome, while acknowledging the possibility that different exposures have different critical windows.
View Article and Find Full Text PDFEmerging technologies now allow for mass spectrometry-based profiling of thousands of small molecule metabolites ('metabolomics') in an increasing number of biosamples. While offering great promise for insight into the pathogenesis of human disease, standard approaches have not yet been established for statistically analyzing increasingly complex, high-dimensional human metabolomics data in relation to clinical phenotypes, including disease outcomes. To determine optimal approaches for analysis, we formally compare traditional and newer statistical learning methods across a range of metabolomics dataset types.
View Article and Find Full Text PDFHuman language is unique among animal communication systems, in part because of its dual patterning in which meaningless phonological units combine to form meaningful words (phonological structure) and words combine to form sentences (lexicosyntactic structure). Although dual patterning is well recognized, its emergence in language development has been scarcely investigated. Chief among questions still unanswered is the extent to which development of these separate structures is independent or interdependent, and what supports acquisition of each level of structure.
View Article and Find Full Text PDFThe analysis of environmental mixtures is of growing importance in environmental epidemiology, and one of the key goals in such analyses is to identify exposures and their interactions that are associated with adverse health outcomes. Typical approaches utilize flexible regression models combined with variable selection to identify important exposures and estimate a potentially nonlinear relationship with the outcome of interest. Despite this surge in interest, no approaches to date can identify exposures and interactions while controlling any form of error rates with respect to exposure selection.
View Article and Find Full Text PDFWe introduce a framework for estimating causal effects of binary and continuous treatments in high dimensions. We show how posterior distributions of treatment and outcome models can be used together with doubly robust estimators. We propose an approach to uncertainty quantification for the doubly robust estimator, which utilizes posterior distributions of model parameters and (1) results in good frequentist properties in small samples, (2) is based on a single run of a Markov chain Monte Carlo (MCMC) algorithm, and (3) improves over frequentist measures of uncertainty which rely on asymptotic properties.
View Article and Find Full Text PDFIn observational studies, estimation of a causal effect of a treatment on an outcome relies on proper adjustment for confounding. If the number of the potential confounders () is larger than the number of observations (), then direct control for all potential confounders is infeasible. Existing approaches for dimension reduction and penalization are generally aimed at predicting the outcome, and are less suited for estimation of causal effects.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2020
Purpose Parental language input (PLI) has reliably been found to influence child language development for children at risk of language delay, but previous work has generally restricted observations to the preschool years. The current study examined whether PLI during the early years explains variability in the spoken language abilities of children with hearing loss at those young ages, as well as later in childhood. Participants One hundred children participated: 34 with normal hearing, 24 with moderate losses who used hearing aids (HAs), and 42 with severe-to-profound losses who used cochlear implants (CIs).
View Article and Find Full Text PDFHigh-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies.
View Article and Find Full Text PDFTo assist with management and interpretation of human metabolomics data, which are rapidly increasing in quantity and complexity, we need better visualization tools. Using a dataset of several hundred metabolite measures profiled in a cohort of ~1500 individuals sampled from a population-based community study, we performed association analyses with eight demographic and clinical traits and outcomes. We compared frequently used existing graphical approaches with a novel 'rain plot' approach to display the results of these analyses.
View Article and Find Full Text PDFValid estimation of treatment effects from observational data requires proper control of confounding. If the number of covariates is large relative to the number of observations, then controlling for all available covariates is infeasible. In cases where a sparsity condition holds, variable selection or penalization can reduce the dimension of the covariate space in a manner that allows for valid estimation of treatment effects.
View Article and Find Full Text PDFFine particulate matter (PM) measured at a given location is a mix of pollution generated locally and pollution traveling long distances in the atmosphere. Therefore, the identification of spatial scales associated with health effects can inform on pollution sources responsible for these effects, resulting in more targeted regulatory policy. Recently, prediction methods that yield high-resolution spatial estimates of PM exposures allow one to evaluate such scale-specific associations.
View Article and Find Full Text PDFA critical issue in the analysis of clinical trials is patients' noncompliance to assigned treatments. In the context of a binary treatment with all or nothing compliance, the intent-to-treat analysis is a straightforward approach to estimating the effectiveness of the trial. In contrast, there exist 3 commonly used estimators with varying statistical properties for the efficacy of the trial, formally known as the complier-average causal effect.
View Article and Find Full Text PDFBackground: In 2012, the EPA enacted more stringent National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5). Few studies have characterized the health effects of air pollution levels lower than the most recent NAAQS for long-term exposure to PM2.
View Article and Find Full Text PDFIn comparative effectiveness research, we are often interested in the estimation of an average causal effect from large observational data (the main study). Often this data does not measure all the necessary confounders. In many occasions, an extensive set of additional covariates is measured for a smaller and non-representative population (the validation study).
View Article and Find Full Text PDFIn environmental epidemiology, exposures are not always available at subject locations and must be predicted using monitoring data. The monitor locations are often outside the control of researchers, and previous studies have shown that "preferential sampling" of monitoring locations can adversely affect exposure prediction and subsequent health effect estimation. We adopt a slightly different definition of preferential sampling than is typically seen in the literature, which we call population-based preferential sampling.
View Article and Find Full Text PDFGeneralized linear mixed models are a common statistical tool for the analysis of clustered or longitudinal data where correlation is accounted for through cluster-specific random effects. In practice, the distribution of the random effects is typically taken to be a Normal distribution, although if this does not hold then the model is misspecified and standard estimation/inference may be invalid. An alternative is to perform a so-called nonparametric Bayesian analyses in which one assigns a Dirichlet process (DP) prior to the unknown distribution of the random effects.
View Article and Find Full Text PDF