Background: CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. Cytokines responsible for stimulating these receptors include CXCL ligands, typically secreted by activated immune cells, fibroblasts, and even adipocytes. Obesity has been linked to poor patient outcome and altered anti-tumor immunity.
View Article and Find Full Text PDFA fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population dynamics that underlie cognitive processes through previous applications and comparisons to other modeling approaches.
View Article and Find Full Text PDFUsing unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model.
View Article and Find Full Text PDFVisual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3-4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity.
View Article and Find Full Text PDFRecently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them.
View Article and Find Full Text PDFRecent evidence has sparked debate about the neural bases of response selection and inhibition. In the current study, we employed two reactive inhibition tasks, the Go/Nogo (GnG) and Simon tasks, to examine questions central to these debates. First, we investigated whether a fronto-cortical-striatal system was sensitive to the need for inhibition per se or the presentation of infrequent stimuli, by manipulating the proportion of trials that do not require inhibition (Go/Compatible trials) relative to trials that require inhibition (Nogo/Incompatible trials).
View Article and Find Full Text PDFWe have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction.
View Article and Find Full Text PDFBackground: Calcium pyrophosphate dihydrate deposition disease is a relatively rare disease with variable clinical presentations.
Case: A 73-year-old man presented with worsening lower back pain and fever. Fine needle aspiration biopsy of the lumbar vertebral bodies (L3-L4) revealed abundant neutrophils admixed with small, birefringent, rhomboid crystals in Diff-Quik-stained smears.