Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines.
View Article and Find Full Text PDFDevelopmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 and a compatible infection by Phytophthora megakarya were studied. Ten genes were selected to represent genes involved in defense (TcCaf-1, TcGlu1,3, TcChiB, TcCou-1, and TcPer-1), gene regulation (TcWRKY-1 and TcORFX-1), cell wall development (TcCou-1, TcPer-1, and TcGlu-1), or energy production (TcLhca-1 and TcrbcS). Leaf development was separated into unexpanded (UE), young red (YR), immature green (IG), and mature green (MG).
View Article and Find Full Text PDFPathogenic diseases represent a major constraint to the growth and yield of cacao (Theobroma cacao L.). Ongoing research on model plant systems has revealed that defense responses are activated via signaling pathways mediated by endogenous signaling molecules such as salicylic acid, jasmonic acid and ethylene.
View Article and Find Full Text PDFThe Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups.
View Article and Find Full Text PDF