Publications by authors named "Joseph A Sulpizio"

Hydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. Although various aspects of electron hydrodynamics have been revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons-the Poiseuille flow profile-has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow.

View Article and Find Full Text PDF

A variety of physical phenomena associated with nanoscale electron transport often results in non-trivial spatial voltage and current patterns, particularly in nonlocal transport regimes. While numerous techniques have been devised to image electron flows, the need remains for a nanoscale probe capable of simultaneously imaging current and voltage distributions with high sensitivity and minimal invasiveness, in a magnetic field, across a broad range of temperatures and beneath an insulating surface. Here we present a technique for spatially mapping electron flows based on a nanotube single-electron transistor, which achieves high sensitivity for both voltage and current imaging.

View Article and Find Full Text PDF

We present a method to fabricate individually addressable junctions of self-assembled monolayers (SAMs) that builds on previous studies which have shown that soft conductive polymer top contacts virtually eliminate shorts through the SAMs. We demonstrate devices with nanoscale lateral dimensions, representing an order of magnitude reduction in device area, with high yield and relatively low device-to-device variation, improving several features of previous soft contact devices. The devices are formed in pores in an inorganic dielectric layer with features defined by e-beam lithography and dry etching.

View Article and Find Full Text PDF

We have developed a highly sensitive integrated capacitance bridge for quantum capacitance measurements. Our bridge, based on a GaAs HEMT amplifier, delivers attofarad (aF) resolution using a small AC excitation at or below k(B)T over a broad temperature range (4-300 K). We have achieved a resolution at room temperature of 60 aF/√Hz for a 10  mV ac excitation at 17.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj5mnoea0fn46r82adr16uev1fpmvj6k8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once