Publications by authors named "Joseph A Knowles"

Objective: To investigate the feasibility of ultrasonographic (US) imaging of head and neck cancer with targeted contrast agents both in vitro and in vivo. We hypothesize that conjugation of microbubble contrast agent to tumor-specific antibodies may improve US detection of head and neck squamous cell carcinoma (HNSCC).

Design: Preclinical blinded assessment of anti-EGFR and anti-CD147 microbubble contrast agents for US imaging of HNSCC.

View Article and Find Full Text PDF

Objectives/hypothesis: MK-2206 is an orally active, allosteric inhibitor of AKT, a component of the phosphatidylinositol-3 kinase (PI3K) pathway. The PI3K-AKT pathway is a downstream signaling pathway that has recently been found to play an important role in head and neck squamous cell carcinoma (HNSCC). The objective of this study is to examine the role AKT inhibition may play in treatment of HNSCC.

View Article and Find Full Text PDF

The objective of this study was to evaluate extracellular matrix metalloproteinase (EMMPRIN) as a novel target in orthotopic pancreatic cancer murine models. MIA PaCa-2 human pancreatic tumor cells were implanted in groups 1 and 3-7, whereas MIA PaCa-2 EMMPRIN knockdown cells were implanted in group 2. Dosing with anti-EMMPRIN antibody started immediately after implantation for groups 1-3 (residual tumor model) and at 21 days after cell implantation for groups 4-7 (established tumor model).

View Article and Find Full Text PDF

In mammals, the early-gestation fetus has the regenerative ability to heal skin wounds without scar formation. This observation was first reported more than 3 decades ago, and has been confirmed in a number of in vivo animal models. Although an intensive research effort has focused on unraveling the mechanisms underlying scarless fetal wound repair, no suitable model of in vitro fetal skin healing has been developed.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling.

View Article and Find Full Text PDF

Purpose: The objective of this study is to evaluate the therapeutic response to a novel monoclonal antibody targeting human extracellular matrix metalloproteinase inducer (EMMPRIN) in combination with gemcitabine in a pancreatic-tumor xenograft murine model by sequential 2-deoxy-2-[18F]fluoro-D-glucose ((18)F-FDG) positron emission tomography/computed tomgraphy (PET/CT) imaging.

Procedures: Four groups of SCID mice bearing orthotopic pancreatic tumor xenografts were injected with phosphate-buffered saline, gemcitabine (120 mg/kg BW), anti-EMMPRIN antibody (0.2 mg), or combination, respectively, twice weekly for 2 weeks, while (18)F-FDG PET/CT imaging was performed weekly for 3 weeks.

View Article and Find Full Text PDF

Targeting the molecular pathways associated with carcinogenesis remains the greatest opportunity to reduce treatment-related morbidity and mortality. Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a cell surface molecule known to promote tumor growth and angiogenesis in preclinical studies of head and neck carcinoma making it an excellent therapeutic target. To evaluate the feasibility of anti-EMMPRIN therapy, an ex-vivo human head and neck cancer model was established using specimens obtained at the time of surgery (n=22).

View Article and Find Full Text PDF

Mammalian wound healing is an intricate process involving the coordinated interaction of a variety of tissue types and cellular lineages. This is governed by a complex array of physical, biological and chemical signals. In adult tissue, the successful completion of wound healing inevitably results in the formation of scar.

View Article and Find Full Text PDF