Publications by authors named "Joseph A Gauthier"

The electrified aqueous/metal interface is critical in controlling the performance of energy conversion and storage devices, but an atomistic understanding of even basic interfacial electrochemical reactions challenges both experiment and computation. We report a combined simulation and experimental study of (reversible) ion-transfer reactions involved in anodic Ag corrosion/deposition, a model system for interfacial electrochemical processes generating or consuming ions. With the explicit modeling of the electrode potential and a hybrid implicit-explicit solvation model, the density functional theory calculations produce free energy curves predicting thermodynamics, kinetics, partial charge profiles, and reaction trajectories.

View Article and Find Full Text PDF

Improving our fundamental understanding of complex heterocatalytic processes increasingly relies on electronic structure simulations and microkinetic models based on calculated energy differences. In particular, calculation of activation barriers, usually achieved through compute-intensive saddle point search routines, remains a serious bottleneck in understanding trends in catalytic activity for highly branched reaction networks. Although the well-known Brønsted-Evans-Polyani (BEP) scaling - a one-feature linear regression model - has been widely applied in such microkinetic models, they still rely on calculated reaction energies and may not generalize beyond a single facet on a single class of materials, e.

View Article and Find Full Text PDF

Lithium-mediated ammonia synthesis (LiMAS) is an emerging electrochemical method for NH production, featuring a meticulous three-step process involving Li electrodeposition, Li nitridation, and LiN protolysis. The essence lies in the electrodeposition of Li, a critical phase demanding current oscillations to fortify the solid-electrolyte interface (SEI) and ensure voltage stability. This distinctive operational cadence orchestrates Li nitridation and LiN protolysis, profoundly influencing the NH selectivity.

View Article and Find Full Text PDF

Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises.

View Article and Find Full Text PDF
Article Synopsis
  • Determining potential-dependent energetics is crucial for studying electrochemical reaction mechanisms.
  • Established methods exist for reaction thermodynamics, but simulating kinetics remains challenging due to potential control issues and high computational costs.
  • This research presents a model that computes electrochemical activation energies using only a few DFT calculations, maintaining consistency across different supercell sizes and proton concentrations for various reactions.
View Article and Find Full Text PDF

Density Functional Theory (DFT) is currently the most tractable choice of theoretical model used to understand the mechanistic pathways for electrocatalytic processes such as CO or CO reduction. Here, we assess the performance of two DFT functionals designed specifically to describe surface interactions, RTPSS and RPBE, as well as two popular meta-GGA functionals, SCAN and B97M-rV, that have not been a priori optimized for better interfacial properties. We assess all four functionals against available experimental data for prediction of bulk and bare surface properties on four electrocatalytically relevant metals, Au, Ag, Cu, and Pt, and for binding CO to surfaces of these metals.

View Article and Find Full Text PDF

The competition between the hydrogen evolution reaction and the electrochemical reduction of carbon dioxide to multi-carbon products is a well-known challenge. In this study, we present a simple micro-kinetic model of these competing reactions over a platinum catalyst under a strong reducing potential at varying proton concentrations in a non-aqueous solvent. The model provides some insight into the mechanism of reaction and suggests that low proton concentration and a high fraction of stepped sites is likely to improve selectivity to multi-carbon products.

View Article and Find Full Text PDF

Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach.

View Article and Find Full Text PDF

Rational design of materials that efficiently convert electrical energy into chemical bonds will ultimately depend on a thorough understanding of the electrochemical interface at the atomic level. Towards this goal, the use of density functional theory (DFT) at the generalized gradient approximation (GGA) level has been applied widely in the past 15 years. In the calculation of electrochemical reaction energetics using GGA-DFT, it is frequently implicitly assumed that ions in the Helmholtz plane have unit charge.

View Article and Find Full Text PDF

One of the major open challenges in ab initio simulations of the electrochemical interface is the determination of electrochemical barriers under a constant driving force. Existing methods to do so include extrapolation techniques based on fully explicit treatments of the electrolyte, as well as implicit solvent models which allow for a continuous variation in electrolyte charge. Emerging hybrid continuum models have the potential to revolutionize the field, since they account for the electrolyte with little computational cost while retaining some explicit electrolyte, representing a "best of both worlds" method.

View Article and Find Full Text PDF

Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application.

View Article and Find Full Text PDF

A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | HO and Al(111) | HO interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E).

View Article and Find Full Text PDF