Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown.
View Article and Find Full Text PDFBackground: Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food.
View Article and Find Full Text PDFHelminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes.
View Article and Find Full Text PDFPentameric ligand-gated ion channels (pLGICs) constitute a large protein superfamily in metazoa whose role as neurotransmitter receptors mediating rapid, ionotropic synaptic transmission has been extensively studied. Although the vast majority of pLGICs appear to be neurotransmitter receptors, the identification of pLGICs in non-neuronal tissues and homologous pLGIC-like proteins in prokaryotes points to biological functions, possibly ancestral, that are independent of neuronal signalling. Here, we report the molecular and physiological characterization of a highly divergent, orphan pLGIC subunit encoded by the pHCl-2 (CG11340) gene, in Drosophila melanogaster We show that pHCl-2 forms a channel that is insensitive to a wide array of neurotransmitters, but is instead gated by changes in extracellular pH.
View Article and Find Full Text PDFNew compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds.
View Article and Find Full Text PDFCys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni.
View Article and Find Full Text PDFThe subunit stoichiometry of heteromeric glycine-gated channels determines fundamental properties of these key inhibitory neurotransmitter receptors; however, the ratio of α1- to β-subunits per receptor remains controversial. We used single-molecule imaging and stepwise photobleaching in Xenopus oocytes to directly determine the subunit stoichiometry of a glycine receptor to be 3α1:2β. This approach allowed us to determine the receptor stoichiometry in mixed populations consisting of both heteromeric and homomeric channels, additionally revealing the quantitative proportions for the two populations.
View Article and Find Full Text PDFFast, ionotropic neurotransmission mediated by ligand-gated ion channels is essential for timely behavioral responses in multicellular organisms. Metazoa employ more ionotropic neurotransmitters in more types of synapses, inhibitory or excitatory, than is generally appreciated. It is becoming increasingly clear that the adaptability of a single neurotransmitter receptor superfamily, the pentameric ligand-gated ion channels (pLGICs), makes the diversity in ionotropic neurotransmission possible.
View Article and Find Full Text PDFThe central theme of Shakespeare's Romeo and Juliet is that names are meaningless, artificial constructs, detached from any underlying reality. By contrast, we argue that a well chosen gene name can concisely convey a wealth of relevant biological information. A consistent nomenclature adds transparency that can have a real impact on our understanding of gene function.
View Article and Find Full Text PDFReports of ivermectin resistance in scabies mites raise concerns regarding the sustainability of mass intervention programs for scabies worldwide and for the treatment of crusted scabies. Ligand gated ion channels (LGICs) are the primary targets of ivermectin in invertebrates. We report the molecular characterisation of SsCl--a novel LGIC from Sarcoptes scabiei var.
View Article and Find Full Text PDFSerotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named SER-1 (also known as 5HT2ce) was responsible for the effect of 5HT on egg-laying.
View Article and Find Full Text PDFThe genome sequences of Caenorhabditis elegans and Drosophila melanogaster reveal a diversity of cysteine-loop ligand-gated ion channels (Cys-loop LGICs) not found in vertebrates. To better understand the evolution of this gene superfamily, I compared all Cys-loop LGICs from rat, the primitive chordate Ciona intestinalis, Drosophila, and C. elegans.
View Article and Find Full Text PDFThe genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists.
View Article and Find Full Text PDFAvermectins and milbemycins are believed to exert their anthelmintic effects by binding to glutamate-gated chloride channels (GluCls). Two GluCl subunits have been localized in the pharynx in Caenorhabditis elegans, and the pharynx has been implicated as a major target for avermectins in C. elegans.
View Article and Find Full Text PDFThe innexins represent a highly conserved protein family, the members of which make up the structural components of gap junctions in invertebrates. We have isolated and characterized a Caenorhabditis elegans gene inx-6 that encodes a new member of the innexin family required for the electrical coupling of pharyngeal muscles. inx-6(rr5) mutants complete embryogenesis without detectable abnormalities at restrictive temperature but fail to initiate postembryonic development after hatching.
View Article and Find Full Text PDFThe locomotion of Caenorhabditis elegans consists of forward crawling punctuated by spontaneous reversals. To better understand the important variables that affect locomotion, we have described in detail the locomotory behavior of C. elegans and identified a set of parameters that are sufficient to describe the animal's trajectory.
View Article and Find Full Text PDFIon channels are targets for many drugs including insecticides and anthelminthic agents such as ivermectin (IVM) and moxidectin (MOX). IVM has been shown to activate glutamate-gated chloride channels (GluCls) from the free-living nematode, Caenorhabditis elegans. Haemonchus contortus is a parasitic nematode that is also extremely sensitive to IVM.
View Article and Find Full Text PDF