Publications by authors named "Joseph A Bucaro"

Using a finite element-based structural acoustics code, simulations were carried out for the acoustic scattering from an unexploded ordnance rocket buried in the sediment under 3 m of water. The simulation treated 90 rocket burial angles in steps of 2°. The simulations were used to train a generative relevance vector machine (RVM) algorithm for identifying rockets buried at unknown angles in an actual water/sediment environment.

View Article and Find Full Text PDF

A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design.

View Article and Find Full Text PDF

The nondestructive evaluation inversion and generalized force-mapping techniques developed and demonstrated for isotropic thin plates by Bucaro et al. [(2004). "Detection and localization of inclusions in plates using inversion of point actuated surface displacements," J.

View Article and Find Full Text PDF

The laboratory implementation of a fault detection and localization method based on inversion of dynamic surface displacements measured by a scanned laser Doppler vibrometer (SLDV) was investigated. The technique uses flexural wave and generalized force inversion algorithms which have previously been demonstrated using simulated noise-free vibration data generated for thick plates with a finite element model. Here these inversion algorithms to SLDV measurements made in the laboratory on a thin nickel plate and a thin carbon fiber composite plate, both having attached reinforcing ribs with intentional de-bonding of the rib/plate interface at a specific location on each structure are applied.

View Article and Find Full Text PDF

In this paper, the feasibility of extending previously described magnetic resonance elastography (MRE) dynamic displacement (and associated elasticity) measurement techniques, currently used successfully in tissue, to solid materials which have much higher shear rigidity and much lower nuclear spin densities, is considered. Based on these considerations, the MRE technique is modified in a straightforward manner and used to directly visualize shear wave displacements within two polymeric materials, one of which is relatively stiff.

View Article and Find Full Text PDF