High precision temperature measurements are a transversal need in a wide area of physical experiments. Space-borne gravitational wave detectors are a particularly challenging case, requiring both high precision and high stability in temperature measurement. In this contribution, we present a design able to reach 1 μK/Hz in most of the measuring band down to 1 mHz, and reaching 20 μK/Hz at 0.
View Article and Find Full Text PDFWe incorrectly cited a maximum acceleration sensitivity of the rigidly-mounted cavity of 2.5 × 10 1/(m s). The correct coupling factor is a factor of 100 smaller: 2.
View Article and Find Full Text PDFBOOST (BOOst Symmetry Test) is a proposed space mission to search for Lorentz invariance violations and aims to improve the Kennedy-Thorndike parameter constraint by two orders of magnitude. The mission consists of comparing two optical frequency references of different nature, an optical cavity and a hyperfine transition in molecular iodine, in a low Earth orbit. Naturally, the stability of the frequency references at the orbit period of 5400 s (=0.
View Article and Find Full Text PDFThe Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations.
View Article and Find Full Text PDFThe laser ranging interferometer (LRI) on board of the GRACE follow-on spacecraft, launched in May 2018, is the first laser interferometer to perform an inter-satellite range measurement. It is designed for ranging noise levels of 80 nm Hz for frequencies above 20 mHz, i.e.
View Article and Find Full Text PDFSpace applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed.
View Article and Find Full Text PDFLink acquisition strategies are key aspects for interspacecraft laser interferometers. We present an optical fiber-based setup able to simulate the interspacecraft link for the laser ranging interferometer (LRI) on gravity recovery and climate experiment Follow-On. It allows one to accurately recreate the far-field intensity profile depending on the mispointing between the spacecraft, Doppler shifts, and spacecraft attitude jitter.
View Article and Find Full Text PDFModern experiments aiming at tests of fundamental physics, like measuring gravitational waves or testing Lorentz Invariance with unprecedented accuracy, require thermal environments that are highly stable over long times. To achieve such a stability, the experiment including typically an optical resonator is nested in a thermal enclosure, which passively attenuates external temperature fluctuations to acceptable levels. These thermal shields are usually designed using tedious numerical simulations or with simple analytical models.
View Article and Find Full Text PDF