Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology.
View Article and Find Full Text PDFIn recent years, the world has seen a troubling increase in antibiotic resistance among bacterial pathogens. In order to provide alternative strategies to combat bacterial infections, it is crucial deepen our understanding into the mechanisms that pathogens use to thrive in complex environments. Most bacteria use sophisticated chemical communication systems to sense their population density and coordinate gene expression in a collective manner, a process that is termed "quorum sensing" (QS).
View Article and Find Full Text PDFThe major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Here, we report the use of photoactive probes to identify MVP as a target of the -(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including A treatment of normal and cancer cells with C12 or other -acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death.
View Article and Find Full Text PDFThe opportunistic human pathogen secretes 2-heptyl-3-hydroxy-4-quinolone (PQS), a quorum sensing (QS) signal that regulates the expression of numerous virulence genes. Here we report the development and application of chemical probes to globally map quinolone binding proteins. The revealed quinolone interactome contains both known as well as newly identified virulence factors and presents new targets for the treatment of bacterial infections.
View Article and Find Full Text PDFChemical cross-linking analyzed by mass spectrometry (XL-MS) has become an important tool in unravelling protein structure, dynamics, and complex formation. Because the analysis of cross-linked proteins with mass spectrometry results in specific computational challenges, many computational tools have been developed to identify cross-linked peptides from mass spectra and subsequently interpret the identified cross-links within their structural context. In this review, we will provide an overview of the different tools that are currently available to tackle the computational part of an XL-MS experiment.
View Article and Find Full Text PDFType III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them using inverted inner membrane vesicles.
View Article and Find Full Text PDFEmerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand.
View Article and Find Full Text PDFThe discovery that plant smoke contains germination stimuli has led to the identification of a new class of signaling molecules named karrikins. Here we report a potential second role for these molecules: in various bacterial species -A. tumefaciens, P.
View Article and Find Full Text PDFThe synthesis and comparison of activities of 'tag-free' probes with diazirines at various positions are described. Remarkable differences in their effects on P. aeruginosa and on human bronchial epithelial cells were observed, supporting the efforts to isolate and identify receptors for N-acyl homoserine lactones.
View Article and Find Full Text PDFThe generation of a current through interaction between bacteria and electrodes has been explored by various methods. We demonstrate the attachment of living bacteria through a surface displayed redox enzyme, alcohol dehydrogenase II. The unnatural amino acid para-azido-L-phenylalanine was incorporated into a specific site of the displayed enzyme, facilitating electron transfer between the enzyme and an electrode.
View Article and Find Full Text PDFLive cell fluorescent labeling of proteins has become a seminal tool in biology and has led to hallmark discoveries in diverse research areas such as protein trafficking, cell-to-cell interactions, and intracellular network dynamics. One of the main challenges, however, remains the ability to label intracellular proteins using fluorescent ligands with high specificity, all the while retaining viability of the targeted cells. Here, we present the first example of live cell labeling and imaging of an intracellular bacterial receptor involved in cell-to-cell communication (i.
View Article and Find Full Text PDFCarboxylesterases (CEs) are a family of ubiquitous enzymes with broad substrate specificity, and their inhibition may have important implications in pharmaceutical and agrochemical fields. One of the most potent inhibitors both for mammalian and insect CEs are trifluoromethyl ketones (TFMKs), but the mechanism of action of these chemicals is not completely understood. This study examines the balance between reactivity versus steric effects in modulating the activity against human carboxylesterase 1.
View Article and Find Full Text PDFThe navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A.
View Article and Find Full Text PDFBackground: The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control--like pheromone-based approaches--are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins.
Methodology: By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE.
A new pheromone antagonist of the codling moth Cydia pomonella is reported. Presaturation of the antennae of the insects with vapors of the antagonist (E,E)-8,10-dodecadienyl trifluoromethyl ketone, analogue of the main component of the pheromone (codlemone), resulted in lower electrophysiological responses to the pheromone relative to untreated insects. In the wind tunnel, the compound elicited a remarkable disruptive effect on all types of behavior of males flying toward a source baited with a pheromone/antagonist blend in 1:1, 1:5, and 1:10 ratios.
View Article and Find Full Text PDFOlfaction is essential for processing chemical signals in insects, but characterizing the proteins implicated in this process has proved challenging. We optimized 2-DE gel resolution of insect proteins by using a buffer containing two reducing agents, DTT and hydroxyethyl disulfide. This buffer clearly improved resolution and decreased spot streaking and spot trains of 2-DE in comparison to DTT alone.
View Article and Find Full Text PDFA pheromone-binding protein from navel orange worm, Amyelois transitella (Atra-PBP1) binds to non-polar pheromone molecules and facilitates the transport and delivery of pheromone to the membrane-bound pheromone receptors. We report complete NMR chemical shift assignments of Atra-PBP1 obtained at pH 4.5 and 25 degrees C (BMRB No.
View Article and Find Full Text PDF