The generation of reactive oxygen species (ROS) the Fenton reaction has received significant attention for widespread applications. This reaction can be triggered by zero-valent metal nanoparticles by converting externally added HO into hydroxyl radicals (˙OH) in acidic media. To avoid the addition of external additives or energy supply, developing self-sustained catalytic systems enabling onsite production of HO at a neutral pH is crucial.
View Article and Find Full Text PDFMagneto-mechanical actuation (MMA) using the low-frequency alternating magnetic fields (AMFs) of magnetic nanoparticles internalized into cancer cells can be used to irreparably damage these cells. However, nanoparticles in cells usually agglomerate, thus greatly augmenting the delivered force compared to single nanoparticles. Here, we demonstrate that MMA also decreases the cell viability, with the MMA mediated by individual, non-interacting nanoparticles.
View Article and Find Full Text PDFWith the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation.
View Article and Find Full Text PDFMultifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles.
View Article and Find Full Text PDFA global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages.
View Article and Find Full Text PDFWith the aim to locally enhance the efficacy of cancer nanotherapies, here we present metal iron based magnetoplasmonic drug-loaded nanocapsules (MAPSULES), merging powerful external magnetic concentration in the tumor and efficient photothermal actuation to locally boost the drug therapeutic action at ultralow drug concentrations. The MAPSULES are composed of paclitaxel-loaded polylactic--glycolic acid (PLGA) nanoparticles partially coated by a nanodome shape iron/silica semishell. The iron semishell has been designed to present a ferromagnetic vortex for incorporating a large quantity of ferromagnetic material while maintaining high colloidal stability.
View Article and Find Full Text PDFDense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (E ) to nanoparticle anisotropy (K V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied.
View Article and Find Full Text PDFThe emerging stretchable photonics field faces challenges, like the robust integration of optical elements into elastic matrices or the generation of large optomechanical effects. Here, the first stretchable plasmonic-enhanced and wrinkled Fabry-Pérot (FP) cavities are demonstrated, which are composed of self-embedded arrays of Au nanostructures at controlled depths into elastomer films. The novel self-embedding process is triggered by the Au nanostructures' catalytic activity, which locally increases the polymer curing rate, thereby inducing a mechanical stress that simultaneously pulls the Au nanostructures into the polymer and forms a wrinkled skin layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
New multi-stimuli responsive materials are required in smart systems applications to overcome current limitations in remote actuation and to achieve versatile operation in inaccessible environments. The incorporation of detection mechanisms to quantify in real time the response to external stimuli is crucial for the development of automated systems. Here, we present the first wireless opto-magnetic actuator with mechanochromic response.
View Article and Find Full Text PDFInterfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/FeO core/shell nanocubes by electron magnetic circular dichroism (EMCD).
View Article and Find Full Text PDFMagneto-ionics, understood as voltage-driven ion transport in magnetic materials, has largely relied on controlled migration of oxygen ions. Here, we demonstrate room-temperature voltage-driven nitrogen transport (i.e.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDecades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally.
View Article and Find Full Text PDFWater remediation and development of carbon-neutral fuels are a priority for the evermore industrialized society. The answer to these challenges should be simple, sustainable, and inexpensive. Thus, biomimetic-inspired circular and holistic processes combing water remediation and biofuel production can be an appealing concept to deal with these global issues.
View Article and Find Full Text PDFDeveloping efficient sunlight photocatalysts with enhanced photocorrosion resistance and minimal ecotoxicological effects on aquatic biota is critical to combat water contamination. Here, the role of chemical composition, architecture, and fixation on the ecotoxicological effects on microalgae of different ZnO and ZnO@ZnS based water decontamination photocatalysts was analyzed in depth. In particular, the ecotoxicological effects of films, nanoparticles and biomimetic micro/nano-ferns were carefully assessed by correlating the algae's viability to the Zn(II) release, the photocatalyst-microalgae interaction, and the production of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like, for example, biomedicine. Therefore, having an accurate control over the nanoparticle shape and size, while preserving the crystallinity, becomes crucial for many applications.
View Article and Find Full Text PDFA synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented.
View Article and Find Full Text PDFElectric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena.
View Article and Find Full Text PDFThe atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel FeO/MnO core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope.
View Article and Find Full Text PDFFe-Cu films with pseudo-ordered, hierarchical porosity are prepared by a simple, two-step procedure that combines colloidal templating (using sub-micrometer-sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65%. The resulting magnetic properties can be controlled at room temperature using an applied electric field generated through an electric double layer in an anhydrous electrolyte.
View Article and Find Full Text PDFUnderstanding the microstructure in heterostructured nanoparticles is crucial to harnessing their properties. Although microscopy is ideal for this purpose, it allows for the analysis of only a few nanoparticles. Thus, there is a need for structural methods that take the whole sample into account.
View Article and Find Full Text PDFA crucial challenge in nanotherapies is achieving accurate and real-time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic-induced rotation of the nanodomes in solution.
View Article and Find Full Text PDFVoltage-driven manipulation of magnetism in electrodeposited 200 nm thick nanoporous single-phase solid solution Cu Ni (at%) alloy films (with sub 10 nm pore size) is accomplished by controlled reduction-oxidation (i.e., redox) processes in a protic solvent, namely 1 m NaOH aqueous solution.
View Article and Find Full Text PDFAlthough cubic rock salt-CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende-CoO phase is antiferromagnetic with a 3rd type structure in a face-centered cubic lattice and a Néel temperature of T (zinc-blende) ≈225 K.
View Article and Find Full Text PDF