An increasing fraction of today's social interactions occur using online social media as communication channels. Recent worldwide events, such as social movements in Spain or revolts in the Middle East, highlight their capacity to boost people's coordination. Online networks display in general a rich internal structure where users can choose among different types and intensity of interactions.
View Article and Find Full Text PDFThe most commonly used dose-response models implicitly assume that accumulation of dose is a time-independent process where each pathogen has a fixed risk of initiating infection. Immune particle neutralization of pathogens, however, may create strong time dependence; i.e.
View Article and Find Full Text PDFInfluenza can be transmitted through respirable (small airborne particles), inspirable (intermediate size), direct-droplet-spray, and contact modes. How these modes are affected by features of the virus strain (infectivity, survivability, transferability, or shedding profiles), host population (behavior, susceptibility, or shedding profiles), and environment (host density, surface area to volume ratios, or host movement patterns) have only recently come under investigation. A discrete-event, continuous-time, stochastic transmission model was constructed to analyze the environmental processes through which a virus passes from one person to another via different transmission modes, and explore which factors increase or decrease different modes of transmission.
View Article and Find Full Text PDFCharacterizing infectivity as a function of pathogen dose is integral to microbial risk assessment. Dose-response experiments usually administer doses to subjects at one time. Phenomenological models of the resulting data, such as the exponential and the Beta-Poisson models, ignore dose timing and assume independent risks from each pathogen.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2006
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman's fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency.
View Article and Find Full Text PDF