Publications by authors named "Josep Ingla-Aynes"

Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations.

View Article and Find Full Text PDF

The achievement of valley-polarized electron currents is a cornerstone for the realization of valleytronic devices. Here, we report on ballistic coherent transport experiments where two opposite quantum point contacts (QPCs) are defined by electrostatic gating in a bilayer graphene (BLG) channel. By steering the ballistic currents with an out-of-plane magnetic field we observe two current jets, a consequence of valley-dependent trigonal warping.

View Article and Find Full Text PDF
Article Synopsis
  • A charge density wave (CDW) is a state in low-dimensional materials where electrons are ordered in patterns, but its practical applications have been limited despite extensive studies.
  • Researchers demonstrated a tunable charge-spin interconversion (CSI) in graphene and 1T-TaS heterostructures by manipulating CDW phases.
  • The findings suggest that chiral CDW multidomains can control CSI, offering a new method for developing advanced spin-orbitronic devices.
View Article and Find Full Text PDF

van der Waals heterostructures composed of two-dimensional (2D) transition metal dichalcogenides and vdW magnetic materials offer an intriguing platform to functionalize valley and excitonic properties in nonmagnetic TMDs. Here, we report magneto photoluminescence (PL) investigations of monolayer (ML) MoSe on the layered A-type antiferromagnetic (AFM) semiconductor CrSBr under different magnetic field orientations. Our results reveal a clear influence of the CrSBr magnetic order on the optical properties of MoSe, such as an anomalous linear-polarization dependence, changes of the exciton/trion energies, a magnetic-field dependence of the PL intensities, and a valley -factor with signatures of an asymmetric magnetic proximity interaction.

View Article and Find Full Text PDF

We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clear peaks with comparable amplitudes and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular, and transport is phase coherent.

View Article and Find Full Text PDF

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect.

View Article and Find Full Text PDF

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession.

View Article and Find Full Text PDF

Spin-orbit coupling in graphene can be enhanced by chemical functionalization, adatom decoration, or proximity with a van der Waals material. As it is expected that such enhancement gives rise to a sizable spin Hall effect, a spin-to-charge current conversion phenomenon of technological relevance, it has sparked wide research interest. However, it has only been measured in graphene/transition-metal dichalcogenide van der Waals heterostructures with limited scalability.

View Article and Find Full Text PDF

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents.

View Article and Find Full Text PDF

Graphene is an excellent material for long-distance spin transport but allows little spin manipulation. Transition-metal dichalcogenides imprint their strong spin-orbit coupling into graphene via the proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba-Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally the spin Hall effect in graphene induced by MoS proximity and for varying temperatures up to room temperature.

View Article and Find Full Text PDF

We report the first observation of a large spin-lifetime anisotropy in bilayer graphene (BLG) fully encapsulated between hexagonal boron nitride. We characterize the out-of-plane (τ_{⊥}) and in-plane (τ_{∥}) spin lifetimes by oblique Hanle spin precession. At 75 K and the charge neutrality point (CNP), we observe a strong anisotropy of τ_{⊥}/τ_{∥}=8±2.

View Article and Find Full Text PDF

Van der Waals heterostructures have become a paradigm for designing new materials and devices in which specific functionalities can be tailored by combining the properties of the individual 2D layers. A single layer of transition-metal dichalcogenide (TMD) is an excellent complement to graphene (Gr) because the high quality of charge and spin transport in Gr is enriched with the large spin-orbit coupling of the TMD via the proximity effect. The controllable spin-valley coupling makes these heterostructures particularly attractive for spintronic and opto-valleytronic applications.

View Article and Find Full Text PDF

Electrical control of spin signals and long distance spin transport are major requirements in the field of spin electronics. Here, we report the efficient guiding of spin currents at room temperature in high mobility hexagonal boron nitride encapsulated bilayer graphene using carrier drift. Our experiments, together with modeling, show that the spin relaxation length, that is 7.

View Article and Find Full Text PDF