Publications by authors named "Josep Chillaron"

Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens and .

View Article and Find Full Text PDF

CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation.

View Article and Find Full Text PDF

The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria.

View Article and Find Full Text PDF

We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria.

View Article and Find Full Text PDF

Cystinuria is a primary inherited aminoaciduria caused by mutations in the genes that encode the two subunits (neutral and basic amino acid transport protein rBAT and b(0,+)-type amino acid transporter 1) of the amino acid transport system b(0,+). This autosomal recessive disorder (in which few cases show dominant inheritance) causes a failure in the reabsorption of filtered cystine and dibasic amino acids in the proximal tubule. The clinical symptoms of this disease are caused by the loss of poorly soluble cystine, which precipitates to form stones.

View Article and Find Full Text PDF

Pseudogenes have classically been considered inactive sequences evolving under neutrality. In recent years, however, a growing body of evidence is favoring the appearance of hypotheses attributing a functional role to pseudogenes. One of these hypotheses is that the silencing of a gene could produce a loss of function that could have been favored by natural selection.

View Article and Find Full Text PDF

Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded.

View Article and Find Full Text PDF

Heteromeric amino acid transporters are composed of a catalytic light subunit and a heavy subunit linked by a disulfide bridge. We analyzed the structural and functional units of systems b0,+ and xC-, formed by the heterodimers b0,+ AT-rBAT and xCT-4F2hc, respectively. Blue Native gel electrophoresis, cross-linking, and fluorescence resonance energy transfer in vivo indicate that system b0,+ is a heterotetramer [b0,+ AT-rBAT]2, whereas xCT-4F2hc seems not to stably or efficiently oligomerize.

View Article and Find Full Text PDF

Heteromeric amino acid transporters (HATs) are composed of a heavy (SLC3 family) and a light (SLC7 family) subunit. Mutations in system b(0,+) (rBAT-b(0,+)AT) and in system y(+)L (4F2hc-y(+)LAT1) cause the primary inherited aminoacidurias (PIAs) cystinuria and lysinuric protein intolerance, respectively. Recent developments [including the identification of the first Hartnup disorder gene (B0AT1; SLC6A19)] and knockout mouse models have begun to reveal the basis of renal and intestinal reabsorption of amino acids in mammals.

View Article and Find Full Text PDF

We have identified in silico arpAT, a gene encoding a new member of the LSHAT family, and cloned it from kidney. Co-expression of arpAT with the heavy subunits rBAT or 4F2hc elicited a sodium-independent alanine transport activity in HeLa cells. L-tyrosine, l-3,4-dihydroxyphenylalanine (L-DOPA), L-glutamine, L-serine, L-cystine, and L-arginine were also transported.

View Article and Find Full Text PDF

Heteromeric amino acid transporters are composed of a heavy and a light subunit linked by a disulfide bridge. 4F2hc/xCT elicits sodium-independent exchange of anionic L-cysteine and L-glutamate (system x(c)(-)). Based on the accessibility of single cysteines to 3-(N-maleimidylpropionyl)biocytin, we propose a topological model for xCT of 12 transmembrane domains with the N and C termini located inside the cell.

View Article and Find Full Text PDF

Heteromeric amino acid transporters (HATs) are composed of two subunits, a polytopic membrane protein (the light subunit) and a disulfide-linked type II membrane glycoprotein (the heavy subunit). HATs represent several of the classic mammalian amino acid transport systems (e.g.

View Article and Find Full Text PDF

We measured sensitivity to thiol modification of the heteromeric glutamate/cystine transporter 4F2hc-xCT expressed in Xenopus oocytes. p-Chloromercuribenzoate (pCMB) and p-chloromercuribenzenesulfonate (pCMBS) rapidly blocked transport activity. Cys(327), located in the middle of the eighth transmembrane domain of the light subunit (xCT), was found to be the main target of inactivation.

View Article and Find Full Text PDF

Cystinuria is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in urolithiasis of cystine. Cystinuria is caused by defects in the amino acid transport system b0,+ (i.e.

View Article and Find Full Text PDF

During renal reabsorption, the amino acid transporters b(o,+) and y(+)L have a major role in the apical uptake of cystine and dibasic amino acids and in the basolateral efflux of dibasic amino acids, respectively. In contrast, the transporters responsible for the basolateral efflux of the apically transported cystine are unknown. This study shows the expression of system L and y(+)L transport activities in the basolateral domain of the proximal tubule-derived cell line OK and the cloning of the corresponding LAT-2 and y(+)LAT-1 cDNAs.

View Article and Find Full Text PDF

The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System b(o,+) exchanges dibasic for neutral amino acids. It is composed of rBAT and b(o,+)AT, the latter being the polytopic membrane subunit.

View Article and Find Full Text PDF

Mutations in the rBAT and b(0,+)AT genes cause type I and non-type I cystinuria, respectively. The disulfide-linked rBAT-b(0,+)AT heterodimer mediates high-affinity transport of cystine and dibasic amino acids (b(0,+)-like activity) in heterologous cell systems. However, the significance of this heterodimer for cystine reabsorption is unknown, as direct evidence for such a complex in vivo is lacking and the expression patterns of rBAT and b(0,+)AT along the proximal tubule are opposite.

View Article and Find Full Text PDF