Publications by authors named "Josep Anton Planell"

The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior.

View Article and Find Full Text PDF

Beta-tricalcium phosphate (beta-TCP) has been encapsulated with poly(ethylene glycol) (PEG) to improve the filler/cement interface, and it was later incorporated to a poly(methyl methacrylate) bone cement in order to obtain cements with improved stability in the long term. Size and size distribution of the agglomerates forming the initial powder was drastically changed after its dispersion in a PEG aqueous solution. Whereas the initial beta-TCP particles had a 584 microm average diameter, the treated particles (TCP-PEG) presented more than 60% of the particles in a range of 2-6 microm.

View Article and Find Full Text PDF

This work reports on the effect of the amount (0, 10, and 30 wt %) and type of HA powder incorporated into an acrylic bone cement on the tensile properties, compression properties, and fracture toughness. The three different types of HA powders used were synthesized in the laboratory and coated with a silane agent prior to incorporation into the cement powder, and differed in particle size, water content, surface area, and crystallinity. It was found that the inclusion of any type of HA powder led to an increase in the tensile modulus (ET), but all the other mechanical properties of the cement decreased (relative to the values of the unfilled cement).

View Article and Find Full Text PDF

This work describes a method to obtain macroporous resorbable glass and glass ceramic scaffolds with controlled biodegradability for tissue engineering applications. The constructs consisted of glass and glass ceramics in the system P(2)O(5)-CaO-Na(2)O-TiO(2) and they were prepared by foaming a slurry of glass particles by addition of a H(2)O(2) solution, and subsequent sintering of the porous structures obtained. Different thermal treatments were applied to control the degree of devitrification of the glass.

View Article and Find Full Text PDF

It is well known that the osseointegration of the commercially pure titanium (c.p. Ti) dental implant is improved when the metal is shot blasted in order to increase its surface roughness.

View Article and Find Full Text PDF