Publications by authors named "Josefine Tratwal"

Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. , rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts.

View Article and Find Full Text PDF

Although hematopoietic stem cell (HSC) transplantation can restore functional hematopoiesis upon immune or chemotherapy-induced bone marrow failure, complications often arise during recovery, leading to up to 25% transplant-related mortality in treated patients. In hematopoietic homeostasis and regeneration, HSCs in the bone marrow give rise to the entirety of cellular blood components. One of the challenges in studying hematopoiesis is the ability to successfully mimic the relationship between the stroma and hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

A novel type of injectable biomaterial with an elastic softening transition is described. The material enables in vivo shaping, followed by induction of 3D stable vascularized tissue. The synthesis of the injectable meta-biomaterial is instructed by extensive numerical simulation as a suspension of irregularly fragmented, highly porous sponge-like microgels.

View Article and Find Full Text PDF

Purpose: Here we review the current knowledge on bone marrow adipocytes (BMAds) as active contributors to the regulation of the hematopoietic niche, and as potentially pivotal players in the progression of hematological malignancies. We highlight the hierarchical and functional heterogeneity of the adipocyte lineage within the bone marrow, and how potentially different contexts dictate their interactions with hematopoietic populations.

Recent Findings: Growing evidence associates the adipocyte lineage with important functions in hematopoietic regulation within the BM niche.

View Article and Find Full Text PDF

The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called "red-to-yellow" transition. Following hematopoietic recovery, such as upon BM transplantation, a "yellow-to-red" transition occurs and functional hematopoiesis is restored.

View Article and Find Full Text PDF

The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research.

View Article and Find Full Text PDF

Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs).

View Article and Find Full Text PDF

The 3rd International Meeting on Bone Marrow Adiposity (BMA) was held at the Olympic Museum in Lausanne, Switzerland, on August 31st and September 1st, 2017. This brief monograph summarizes the scientific contents of the meeting and highlights the birth of the International Bone Marrow Adiposity Society (BMAS).

View Article and Find Full Text PDF

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation.

View Article and Find Full Text PDF

Background: The utility of mesenchymal stromal cells (MSCs) in therapeutic applications for regenerative medicine has gained much attention. Clinical translation of MSC-based approaches requires in vitro culture-expansion to achieve a sufficient number of cells. The ideal cell culture medium should be devoid of any animal derived components.

View Article and Find Full Text PDF

Introduction: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells from the bone marrow (BMSCs) are widely used as experimental regenerative treatment of ischemic heart disease, and the first clinical trials using adipose-derived stromal cells (ASCs) are currently being conducted. Regenerative mechanisms of BMSCs and ASCs are manifold and in vitro pretreatment of the cells with growth factors has been applied to potentially enhance these properties. When characterizing the transcriptional activity of these cellular mechanisms in vitro it is important to consider the effect of the growth factor treatment on reference genes (RGs) for the normalization of qPCR data.

View Article and Find Full Text PDF

Background: Adipose-derived stromal cells (ASCs) stimulated with vascular endothelial growth factor (VEGF) and serum-deprived, are applied in the first in-man double-blind placebo-controlled MyStromalCell Trial, as a novel therapeutic option for treatment of ischemic heart disease (IHD). This in vitro study explored the effect of VEGF and serum deprivation on endothelial differentiation capacity of ASCs from healthy donors and IHD patients.

Methods: ASCs stimulated with rhVEGF(A165) in serum-deprived medium for one to three weeks were compared with ASCs in serum-deprived (2% fetal bovine serum) or complete medium (10% fetal bovine serum).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrm5nd1gmelqgius5bpgge8qt79u6ebau): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once