To ascertain the structure-activity relationship of the core 1,2,4-trioxolane substructure of dispiro ozonides OZ277 and OZ439, we compared the antimalarial activities and ADME profiles of the 1,2-dioxolane, 1,2,4-trioxane, and 1,2,4,5-tetraoxane isosteres. Consistent with previous data, both dioxolanes had very weak antimalarial properties. For the OZ277 series, the trioxane isostere had the best ADME profile, but its overall antimalarial efficacy was not superior to that of the trioxolane or tetraoxane isosteres.
View Article and Find Full Text PDFThirty-three N-acyl 1,2,4-dispiro trioxolanes (secondary ozonides) were synthesized. For these ozonides, weak base functional groups were not required for high antimalarial potency against Plasmodium falciparum in vitro, but were necessary for high antimalarial efficacy in Plasmodium berghei-infected mice. A wide range of LogP/D(pH)(7.
View Article and Find Full Text PDFThe structure and stereochemistry of the cyclohexane substituents of analogues of arterolane (OZ277) had little effect on potency against Plasmodium falciparum in vitro. Weak base functional groups were not required for high antimalarial potency, but they were essential for high antimalarial efficacy in P. berghei-infected mice.
View Article and Find Full Text PDFIn four or five chemical steps from the 1,2,4-trioxane artemisinin, a new series of 23 trioxane dimers has been prepared. Eleven of these new trioxane dimers cure malaria-infected mice via oral dosing at 3 x 30 mg/kg. The clinically used trioxane drug sodium artesunate prolonged mouse average survival to 7.
View Article and Find Full Text PDFFourteen spiro- and dispiro-1,2-dioxolanes were synthesized by peroxycarbenium ion annulations with alkenes in yields ranging from 30% to 94%. Peroxycarbenium ion precursors included triethylsilyldiperoxyketals and -acetals derived from geminal dihydroperoxides and from a new method employing triethylsilylperoxyketals and -acetals derived from ozonolysis of alkenes. The 1,2-dioxolanes were either inactive or orders of magnitude less potent than the corresponding 1,2,4-trioxolanes or artemisinin against P.
View Article and Find Full Text PDFRBx11160 (OZ277) is a promising antimalarial drug candidate that Ranbaxy Laboratories Limited and Medicines for Malaria Venture (MMV) are currently developing as a fixed combination with piperaquine. Here, we describe the in vitro (Plasmodium falciparum) and in vivo (Plasmodium berghei) activities of piperaquine in combination with RBx11160 and artemether. In vitro, both combinations demonstrated a slight tendency towards antagonism with mean sums of fractional inhibitory concentrations (mean Sigma FICs) of 1.
View Article and Find Full Text PDFWith an aim to identify a dispiro-1,2,4-trioxolane with high oral activity and good physicochemical properties, 27 derivatives of an achiral piperidine trioxolane were synthesized; most were potent antimalarial peroxides with IC(50)s ranging from 0.20 to 7.0 ng/mL.
View Article and Find Full Text PDFBased on the structures of several lipophilic trioxolane antimalarial prototypes, we set out to determine which functional groups were associated with good antimalarial profiles and identify more polar (lower LogP/LogD) lead compounds with good physicochemical properties. More lipophilic trioxolanes tended to have better oral activities than their more polar counterparts. Trioxolanes with a wide range of neutral and basic, but not acidic, functional groups had good antimalarial profiles.
View Article and Find Full Text PDFThis paper describes the discovery of synthetic 1,2,4-trioxolane antimalarials and how we established a workable structure-activity relationship in the context of physicochemical, biopharmaceutical, and toxicological profiling. An achiral dispiro-1,2,4-trioxolane (3) in which the trioxolane is flanked by a spiroadamantane and spirocyclohexane was rapidly identified as a lead compound. Nonperoxidic 1,3-dioxolane isosteres of 3 were inactive as were trioxolanes without the spiroadamantane.
View Article and Find Full Text PDFThe discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle. Available evidence suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem and proteins (enzymes), one of which--the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref.
View Article and Find Full Text PDF