Since 1973, Kunene River water has been carried from the Calueque reservoir in Angola along a 160 km open concrete canal to the town of Oshakati in the central part of the Cuvelai-Etosha Basin and has been supplying drinking water to the most densely populated rural area of Namibia. Despite its importance for the region, intra-seasonal water quality and the technical condition of the canal are not routinely checked. Water samples were collected during four field campaigns right before the onset of the rainy season (November 2013 and 2014), and after the rainy season (June 2014 and May 2015), at 16 sites along the canal for stable water isotopes (deuterium, oxygen-17 and oxygen-18) and hydrochemical analyses.
View Article and Find Full Text PDFThe study area is the Namibian part of the Cuvelai-Etosha Basin (CEB), located in central northern Namibia. The CEB is home to 40 % of Namibia's population, and most of the people live in rural areas. These people depend on both surface and groundwater resources which are limited in this dryland (mean annual rainfall ranging from 250 to 550 mm/a).
View Article and Find Full Text PDFIsotopes Environ Health Stud
August 2017
A hydrogeochemical and stable isotope study (H and O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells.
View Article and Find Full Text PDFIsotopes Environ Health Stud
September 2016
The stable water isotope deuterium ((2)H) was applied as an artificial tracer ((2)H2O) in order to estimate groundwater recharge through the unsaturated zone and describe soil water movement in a semi-arid region of northern central Namibia. A particular focus of this study was to assess the spatiotemporal persistence of the tracer when applied in the field on a small scale under extreme climatic conditions and to propose a method to obtain estimates of recharge in data-scarce regions. At two natural sites that differ in vegetation cover, soil and geology, 500 ml of a 70% (2)H2O solution was irrigated onto water saturated plots.
View Article and Find Full Text PDF