Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies.
View Article and Find Full Text PDFHepatocytes derived from human pluripotent stem cells (hPSC-HEP) have the potential to replace presently used hepatocyte sources applied in liver disease treatment and models of drug discovery and development. Established hepatocyte differentiation protocols are effective and generate hepatocytes, which recapitulate some key features of their in vivo counterparts. However, generating mature hPSC-HEP remains a challenge.
View Article and Find Full Text PDFHuman pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development.
View Article and Find Full Text PDFHepatotoxicity is one of the most cited reasons for withdrawal of approved drugs from the market. The use of nonclinically relevant in vitro and in vivo testing systems contributes to the high attrition rates. Recent advances in differentiating human induced pluripotent stem cells (hiPSCs) into pure cultures of hepatocyte-like cells expressing functional drug metabolizing enzymes open up possibilities for novel, more relevant human cell based toxicity models.
View Article and Find Full Text PDFHuman hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure.
View Article and Find Full Text PDFEmerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSC) have the potential to become important tools for the establishment of new models for in vitro drug testing of, for example, toxicity and pharmacological effects. Late-stage attrition in the pharmaceutical industry is to a large extent caused by selection of drug candidates using nonpredictive preclinical models that are not clinically relevant. The current hepatic in vivo and in vitro models show clear limitations, especially for studies of chronic hepatotoxicity.
View Article and Find Full Text PDFHuman embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively).
View Article and Find Full Text PDFAltern Lab Anim
May 2011
Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes.
View Article and Find Full Text PDFEndoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed.
View Article and Find Full Text PDFWe describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent 'arteriovenous' flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently.
View Article and Find Full Text PDFTissue Eng Part C Methods
February 2010
Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5.
View Article and Find Full Text PDFHuman embryonic stem cells (hESC) offer a potential unlimited source for functional human hepatocytes, since they can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing several hepatic markers. Such cells could be used for, e.g.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) offer a potential unlimited source for functional human hepatocytes, since hESCs can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing several hepatic markers. These hepatocyte-like cells could be used in various human in vitro hepatocyte assays, e.g.
View Article and Find Full Text PDFThe recent success in restoring normoglycemia in type 1 diabetes by islet cell transplantation indicates that cell replacement therapy of this severe disease is achievable. However, the severe lack of donor islets has increased the demand for alternative sources of beta-cells, such as adult and embryonic stem cells. Here, we investigate the potential of human embryonic stem cells (hESCs) to differentiate into beta-cells.
View Article and Find Full Text PDFEarly growth and differentiation of the pancreatic endoderm is regulated by soluble factors from the pancreatic mesenchyme. Previously, we demonstrated that N-cadherin-deficient mice lack a dorsal pancreas, due to a critical role of N-cadherin in dorsal pancreatic mesenchymal cell survival. Here, we show that restoring cardiac and circulatory function in N-cadherin null mice by cardiac-specific expression of N-cadherin, rescues formation of the dorsal pancreas, indicating that the phenotype is secondary to defects related to cardiac/vascular function.
View Article and Find Full Text PDFThe cadherin superfamily of cell-cell adhesion molecules (CAM) are crucial regulators of morphogenesis and axonal guidance during development of the nervous system and have been suggested to play important roles in neural plasticity of the brain. To study the latter, we created a mouse model that expressed a dominant negative classical cadherin in the brain of adult mice. The mice were tested for spontaneous motor activity and exploratory behavior in the open field, anxiety in the plus-maze, and spatial learning and memory in the water-T maze.
View Article and Find Full Text PDF