Antioxidants (Basel)
February 2021
Frataxin is a mitochondrial protein which deficiency causes Friedreich's ataxia, a cardio-neurodegenerative disease. The lack of frataxin induces the dysregulation of mitochondrial iron homeostasis and oxidative stress, which finally causes the neuronal death. The mechanism through which frataxin regulates the oxidative stress balance is rather complex and poorly understood.
View Article and Find Full Text PDFGlycation occurs in vivo as a result of the nonenzymatic reaction of carbohydrates (and/or their autoxidation products) with proteins, DNA, or lipids. Protein glycation causes loss-of-function and, consequently, the development of diabetic-related diseases. Glycation also boosts protein aggregation, which can be directly related with the higher prevalence of aggregating diseases in diabetic people.
View Article and Find Full Text PDFProtein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation.
View Article and Find Full Text PDFProtein glycation causes loss-of-function through a process that has been associated with several diabetic-related diseases. Additionally, glycation has been hypothesized as a promoter of protein aggregation, which could explain the observed link between hyperglycaemia and the development of several aggregating diseases. Despite its relevance in a range of diseases, the mechanism through which glycation induces aggregation remains unknown.
View Article and Find Full Text PDFAccurate prediction of thermodynamic constants of chemical reactions in solution is one of the current challenges in computational chemistry. We report a scheme for predicting stability constants (log β) and pKa values of metal complexes in solution by means of calculating free energies of ligand- and proton-exchange reactions using Density Functional Theory calculations in combination with a continuum solvent model. The accuracy of the predicted log β and pKa values (mean absolute deviations of 1.
View Article and Find Full Text PDFSchiff bases (SBs) are the initial products of non-enzymatic glycation reactions, which are associated to some diabetes-related diseases. In this work, we used physiological pH and temperature conditions to study the formation kinetics of the SBs of 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine (DPHE) and 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) with various glycating compounds and with pyridoxal 5'-phosphate (an effective glycation inhibitor). Based on the obtained results, the hydrophobic environment simultaneously decreases the nucleophilic character of the amino group (k1) and increases its pKa, thereby increasing the formation rate of SB (kobs).
View Article and Find Full Text PDFThis study reports the carbon acidities of Cα and C4′ atoms in the Schiff bases of pyridoxal-5′-phosphate (PLP) and pyridoxamine-5′-phosphate (PMP) complexed with several biologically available metal ions (Mg2+, Ni2+, Zn2+, Cu2+, Al3+, and Fe3+). Density functional theory calculations were carried out to determine the free energies of proton exchange reactions of a set of 18 carbon acids and a Schiff base used as a reference species. The experimental pK(a) values of such carbon acids were used to calibrate the computed free energies in a range of 30 pK(a) units.
View Article and Find Full Text PDFThe origins of C-H activation in pyridoxal-5'-phosphate (PLP) Schiff bases and modulation of reaction specificity in PLP-enzymes are still not completely understood. There are no available studies that compare the reactivity of C4' carbons in ketimine Schiff bases with that of Cα carbons in their aldimine counterparts, which is essential to unravel the mechanisms that govern the evolution of their common carbanionic intermediates. Second-order rate constants for phosphate-catalyzed proton/deuterium exchange reactions in D(2)O of C4' carbons suffer a 10(5)-fold increase due to Schiff base formation (k(B) = 5.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP) is a B(6) vitamer acting as an enzyme cofactor in various reactions of aminoacid metabolism and inhibiting glycation of biomolecules. Nonenzymatic glycation of aminophospholipids alters the stability of lipid bilayers and cell function as a result. Similarly to protein glycation, aminophospholipid glycation initially involves the formation of a Schiff base.
View Article and Find Full Text PDFPyridoxamine (PM), a natural derivative of vitamin B(6) , possesses a high biological and biomedical significance by virtue of its acting as enzyme cofactor in amino acid metabolism and as inhibitor in the nonenzymatic glycation of proteins. Both types of processes require the initial formation of a Schiff base. In this work, we used NMR spectroscopy to study the formation mechanism for a Schiff base between PM and formaldehyde (FA).
View Article and Find Full Text PDFNon-enzymatic aminophospholipid glycation is an especially important process because it alters the stability of lipid bilayers and interferes with cell function and integrity as a result. However, the kinetic mechanism behind this process has scarcely been studied. As in protein glycation, the process has been suggested to involve the formation of a Schiff base as the initial, rate-determining step.
View Article and Find Full Text PDFPyridoxamine is a vitamin B(6) derivative involved in biological reactions such as transamination, and can also act as inhibitor in protein glycation. In both cases, it has been reported that Schiff base formation between pyridoxamine and carbonyl compounds is the main step. Nevertheless, few studies on the Schiff base formation have been reported to date.
View Article and Find Full Text PDFPyridoxamine (PM) has long been known to inhibit protein glycation via various mechanisms of action. One such mechanism involves the scavenging of carbonyl compounds with glycating ability. Despite the abundant literature on this topic, few quantitative kinetic studies on the processes involved have been reported.
View Article and Find Full Text PDFAmadori compounds act as precursors in the formation of advanced glycation end products (AGEs) by non-enzymatic protein glycation, which are involved in ensuing protein damage. Pyridoxamine is a potent drug against protein glycation, and can act on several pathways in the glycation process. Nevertheless, the pyridoxamine inhibition action on Amadori compounds oxidation is still unclear.
View Article and Find Full Text PDFWe have studied the reactivity of glycolaldehyde (GLA) with N-acetyl-Cys and N-acetyl-Phe-Lys at physiological conditions of pH and temperature. The reaction between the N-Ac-Phe-Lys and GLA was studied in the presence of NaCNBH3 and then by using high-performance liquid chromatography (HPLC)-UV/Vis. The reaction between N-Ac-Cys and GLA was followed by stopped-flow spectroscopy with UV/Vis detection.
View Article and Find Full Text PDFGlycosylation of proteins by glucose produces toxic and immunogenic compounds called 'advanced glycosylation end products' (AGEs), which are the origin of pathological symptoms in various chronic diseases. In this work, a kinetic study of the reaction between glucose (2) and pyridoxamine (1)--a potent inhibitor of AGEs formation both in vivo and in vitro--was conducted. The NH2 group of pyridoxamine was found to react with the C=O group of glucose to form the Schiff base 9 (Scheme 2).
View Article and Find Full Text PDFWe report a molecular-mechanics (AMBER*) study on the Henry-Michaelis complex and the corresponding acyl-enzyme adduct formed between imipenem (1), a transient inhibitor of beta-lactamases, and Enterobacter cloacae P99, a class C-beta-lactamase. We have examined the influence of the structural configuration of the functional groups in the substrate on their three-dimensional (3D) arrangement at the active site, which was compared with those adopted by typical penicillins and cephalosporins. Our results confirm that the carboxy group of the antibiotic plays a prominent role in the binding of the substrate to the active site, and that it activates Ser64 through interaction with the phenolic OH group of Tyr150.
View Article and Find Full Text PDFIn this work, we applied multi-wavelength stopped-flow spectroscopy (MSFS) to study the chemical equilibria between tautomeric or hydrated forms of various vitamin B6 compounds and the Schiff base formed by epsilon-aminocaproic acid (= 6-aminohexanoic acid) with pyridoxal 5'-phosphate at 25 degrees and variable pH. Since some of these compounds are photosensitive, we analyzed the possible occurrence of any secondary photo-induced processes under the conditions of irradiation in the MSFS equipment (continuous irradiation with light from a 75-W Xe lamp spanning the wavelength range of 200-700 nm). To determine the tautomeric composition of these compounds, the electronic absorption spectra were analyzed by means of log-normal curves.
View Article and Find Full Text PDFThe indiscriminate use of beta-lactams has considerably diminished their efficiency as a result of bacteria developing effective defense mechanisms against them. Recent pharmaceutical research has led to the synthesis of tricyclic beta-lactam antibiotics known as "tricyclic carbapenems" or "trinems". In this work, we studied the chemical reactivity, an essential property for antibiotic action, of trinems and found it to be similar to that of cephalosporins.
View Article and Find Full Text PDFMolecular models for the Henry Michaelis complexes of Enterobacter cloacae, a class C beta-lactamase, with penicillin G and cephalotin have been constructed by using molecular mechanic calculations, based on the AMBER force field, to examine the molecular differentiation mechanisms between cephalosporins and penicillins in beta-lactamases. Ser318Ala and Thr316Ala mutations in both complexes and Asn346Ala and Thr316Ala/Asn346Ala double mutation in penicillin G complex have also been studied. Results confirm that Thr316, Ser318, and Asn346 play a crucial role in the substrate recognition, via their interactions with one of the oxygens of the antibiotic carboxyl group.
View Article and Find Full Text PDF