Artificial Intelligence aids early diagnosis and development of new treatments, which is key to slow down the progress of the diseases, which to date have no cure. The patients' evaluation is carried out through diagnostic techniques such as clinical assessments neuroimaging techniques, which provide high-dimensionality data. In this work, a computational tool is presented that deals with the data provided by the clinical diagnostic techniques.
View Article and Find Full Text PDFGenetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants.
View Article and Find Full Text PDFInt J Geriatr Psychiatry
December 2021
Background: Neuropsychological assessment is considered a valid tool in the diagnosis of neurodegenerative disorders. However, there is an important overlap in cognitive profiles between Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD), and the usefulness in diagnosis is uncertain. We aimed to develop machine learning-based models for the diagnosis using cognitive tests.
View Article and Find Full Text PDFBackground: The analysis of health and medical data is crucial for improving the diagnosis precision, treatments and prevention. In this field, machine learning techniques play a key role. However, the amount of health data acquired from digital machines has high dimensionality and not all data acquired from digital machines are relevant for a particular disease.
View Article and Find Full Text PDFIntroduction: Primary progressive aphasia (PPA) is a clinical syndrome of neurodegenerative origin with 3 main variants: non-fluent, semantic, and logopenic. However, there is some controversy about the existence of additional subtypes. Our aim was to study the language and cognitive features associated with a new proposed classification for PPA.
View Article and Find Full Text PDFPrimary progressive aphasia (PPA) is a clinical syndrome characterized by the neurodegeneration of language brain systems. Three main clinical forms (non-fluent, semantic, and logopenic PPA) have been recognized, but applicability of the classification and the capacity to predict the underlying pathology is controversial. We aimed to study FDG-PET imaging data in a large consecutive case series of patients with PPA to cluster them into different subtypes according to regional brain metabolism.
View Article and Find Full Text PDF