Publications by authors named "Josefa Cruz"

In , successful development relies on the precise coordination of both spatial and temporal regulatory axes. The temporal axis governs stage-specific identity and developmental transitions through a number of genes, collectively forming the . Among these, Ecdysone inducible protein 93F (E93) serves as the critical determinant for adult specification, but its mechanism of action remains unclear.

View Article and Find Full Text PDF

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues.

View Article and Find Full Text PDF

Understanding the mechanisms governing body size attainment during animal development is of paramount importance in biology. In insects, a crucial phase in determining body size occurs at the larva-pupa transition, marking the end of the larval growth period. Central to this process is the attainment of the threshold size (TS), a critical developmental checkpoint that must be reached before the larva can undergo metamorphosis.

View Article and Find Full Text PDF

The role of steroid hormone signaling during insect post-embryonic development has been extensively characterized. However, its function during embryonic development is less understood, particularly in short-germ band hemimetabolous insects. To solve this, we have used to analyze the embryonic functions of the heterodimeric ecdysone receptor, BgEcR-A and BgRXR.

View Article and Find Full Text PDF

Understanding the mechanisms that determine final body size of animals is a central question in biology. In animals with determinate growth, such as mammals or insects, the size at which the immature organism transforms into the adult defines the final body size, as adult individuals do not grow [1]. In Drosophila, the growth period ends when the immature larva undergoes the metamorphic transition to develop the mature adult [2].

View Article and Find Full Text PDF

Adult progenitor cells activation is a key event in the formation of adult organs. In Drosophila, formation of abdominal adult trachea depends on the specific activation of tracheal adult progenitors (tracheoblasts) at the Tr4 and Tr5 spiracular branches. Proliferation of these tracheoblasts generates a pool of tracheal cells that migrate toward the posterior part of the trachea by the activation of the branchless/fibroblast growth factor (Bnl/FGF) signaling to form the abdominal adult trachea.

View Article and Find Full Text PDF

How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult.

View Article and Find Full Text PDF

A population of Drosophila adult tracheal progenitor cells arises from differentiated cells of the larval main trachea that retain the ability to reenter the cell cycle and give rise to the multiple adult tracheal cell types. These progenitors are unique to the second tracheal metamere as homologous cells from other segments, express fizzy-related (fzr), the Drosophila homolog of CDH1 protein of the APC complex, and enter endocycle and do not contribute to adult trachea. Here, we examine the mechanisms for their quiescence and show that they reenter the cell cycle by expression of string/cdc25 through ecdysone.

View Article and Find Full Text PDF

The orphan nuclear receptor HR3 is essential for developmental switches during insect development and metamorphosis regulated by 20-hydroxyecdysone (20E). Reproduction of female mosquitoes of the major vector of Dengue fever, Aedes aegypti, is cyclic because of its dependence on blood feeding. 20E is an important hormone regulating vitellogenic events in this mosquito; however, any role for HR3 in 20E-driven reproductive events has not been known.

View Article and Find Full Text PDF

Mosquitoes are adapted to using vertebrate blood as a nutrient source to promote egg development and as a consequence serve as disease vectors. Blood-meal activated reproductive events in female mosquitoes are hormonally and nutritionally controlled with an insect steroid hormone 20-hydroxyecdysone (20E) playing a central role. The nuclear receptor E75 is an essential factor in the 20E genetic hierarchy, however functions of its three isoforms - E75A, E75B, and E75C - in mosquito reproduction are unclear.

View Article and Find Full Text PDF

Metamorphosis in holometabolous insects is mainly based on the destruction of larval tissues. Intensive research in Drosophila melanogaster, a model of holometabolan metamorphosis, has shown that the steroid hormone 20-hydroxyecdysone (20E) signals cell death of larval tissues during metamorphosis. However, D.

View Article and Find Full Text PDF

In anautogenous mosquitoes, egg development requires blood feeding and as a consequence mosquitoes act as vectors of numerous devastating diseases of humans and domestic animals. Understanding the molecular mechanisms regulating mosquito egg development may contribute significantly to the development of novel vector-control strategies. Previous studies have shown that in the yellow fever mosquito Aedes aegypti, nuclear receptors (NRs) play a key role in the endocrine regulation of reproduction.

View Article and Find Full Text PDF

Postembryonic development of holometabolous and hemimetabolous insects occurs through successive molts triggered by 20-hydroxyecdysone (20E). The molecular action of 20E has been extensively studied in holometabolous insects, but data on hemimetabolous are scarce. We have demonstrated that during the nymphal development of the hemimetabolous insect Blattella germanica, 20E binds to the heterodimeric receptor formed by the nuclear receptors BgEcR-A and BgRXR activating a cascade of gene expression, including the nuclear receptors BgE75 and BgHR3.

View Article and Find Full Text PDF

Ecdysteroid hormones regulate key developmental processes throughout the life cycle of insects. 20-Hydroxyecdysone (20E) acts upon binding to a heterodimeric receptor formed by the nuclear receptors EcR and USP. The receptor, once 20E bounds to it, elicits cascades of gene expression that mediate and amplify the hormonal signal.

View Article and Find Full Text PDF

Forkhead-box (Fox) genes encode a family of transcription factors defined by a 'winged helix' DNA-binding domain. In this study we aimed to identify Fox factors that are expressed within the fat body of the yellow fever mosquito Aedes aegypti, and determine whether any of these are involved in the regulation of mosquito yolk protein gene expression. The Ae.

View Article and Find Full Text PDF

In hemimetabolous insects, the molecular basis of the 20-hydroxyecdysone (20E)-triggered genetic hierarchy is practically unknown. In the cockroach Blattella germanica, we had previously characterized one isoform of the ecdysone receptor, BgEcR-A, and two isoforms of its heterodimeric partner, BgRXR-S and BgRXR-L. One of the early-late genes of the 20E-triggered genetic hierarchy, is HR3.

View Article and Find Full Text PDF

The molecular basis of ecdysteroid function during development has been analyzed in detail in holometabolous insects, especially in Drosophila melanogaster, but rarely in hemimetabolous. Using the hemimetabolous species Blattella germanica (German cockroach) as model, we show that the ecdysone receptor isoform-A (BgEcR-A) mRNA is present throughout the penultimate and last nymphal instars in all tissues analyzed (prothoracic gland, epidermis and fat body). To study the functions of BgEcR-A, we reduced its expression using systemic RNAi in vivo, and we obtained knockdown specimens.

View Article and Find Full Text PDF

Ecdysteroids play a major role during developmental growth in insects. The more active form of these hormones, 20-hydroxyecdysone (20E), acts upon binding to its heterodimeric receptor, formed by the two nuclear receptors, EcR and RXR/USP. Functional characterization of USP has been exclusively conducted on the holometabolous insect Drosophila melanogaster.

View Article and Find Full Text PDF

In insects, the molecular basis of ecdysteroid action has been analysed in great detail in flies and moths, but rarely in primitive orders. Using the primitive hemimetabolous insect Blattella germanica, the German cockroach, as a model, we isolated two cDNAs of RXR/USP, a component of the heterodimeric ecdysone receptor. These two cDNAs correspond to two isoforms, named BgRXR-S (short form) and BgRXR-L (long form).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3oo0tvlaip010og0mrquvu71rmp93dcm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once