Publications by authors named "Josefa Barrero-Moreno"

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied.

View Article and Find Full Text PDF

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed.

View Article and Find Full Text PDF

Polycyclic Aromatic Hydrocarbons (PAHs) have been detected in rubber and plastic components of a number of consumer products such as toys, tools for domestic use, sports equipment, and footwear, with carbon black and extender oils having been identified as principal sources. In response to these findings, the European Union Regulation (EU) No. 1272/2013 was adopted in December 2013, amending entry 50 in Annex XVII to the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) directive establishing a restriction on the content of eight individual carcinogenic PAHs in plastic and rubber parts of products supplied to the public.

View Article and Find Full Text PDF

Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

View Article and Find Full Text PDF

Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) is a promising technique able to generate the number based-particle size distribution (PSD) of nanoparticles (NPs) in aqueous suspensions. However, SP-ICPMS analysis is not consolidated as routine-technique yet and is not typically applied to real test samples with unknown composition. This work presents a methodology to detect, quantify and characterise the number-based PSD of Ag-NPs in different environmental aqueous samples (drinking and lake waters), aqueous samples derived from migration tests and consumer products using SP-ICPMS.

View Article and Find Full Text PDF

Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH.

View Article and Find Full Text PDF

E-liquids generally contain four main components: nicotine, flavours, water and carrier liquids. The carrier liquid dissolves flavours and nicotine and vaporises at a certain temperature on the atomizer of the e-cigarette. Propylene glycol and glycerol, the principal carriers used in e-liquids, undergo decomposition in contact with the atomizer heating-coil forming volatile carbonyls.

View Article and Find Full Text PDF

Synthetic amorphous silica (SAS) has been used as food additive under the code E551 for decades and the agrifood sector is considered a main exposure vector for humans and environment. However, there is still a lack of detailed methodologies for the determination of SAS' particle size and concentration. This work presents the detection and characterization of NPs in eleven different food-grade SAS samples, following a reasoned and detailed sequential methodology.

View Article and Find Full Text PDF

This work proposes the use of multimodal mixtures of monodispersed silica nanoparticles (SiO2-NPs) standards for the simultaneous determination of size and concentration of SiO2-NPs in aqueous suspensions by asymmetric flow field-flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICPMS). For such a purpose, suspensions of SiO2-NPs standards of 20, 40, 60, 80, 100, and 150 nm were characterized by transmission electronic microscopy (TEM), centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) and by measuring the Z-potential of the particles as well as the exact concentration of NPs by offline ICPMS. An online AF4-ICPMS method which allowed the separation of all the different sized SiO2-NPs contained in the mixture of standards was developed and the analytical figures of merit were systematically evaluated.

View Article and Find Full Text PDF

Electronic cigarettes have achieved growing popularity since their introduction onto the European market. They are promoted by manufacturers as healthier alternatives to tobacco cigarettes, however debate among scientists and public health experts about their possible impact on health and indoor air quality means further research into the product is required to ensure decisions of policymakers, health care providers and consumers are based on sound science. This study investigated and characterised the impact of 'vaping' (using electronic cigarettes) on indoor environments under controlled conditions using a 30m(3) emission chamber.

View Article and Find Full Text PDF

The powerful antibacterial properties of engineered silver nanoparticles (AgNPs) have, in recent years, led to a great increase in their use in consumer products such as textiles and personal care products offers. This widespread and often indiscriminate use of nano-silver is inevitably increasing the probability that such materials be accidentally or deliberately lost into the environment. Once present in the environment the normally useful antibacterial properties of the silver may instead become a potential hazard to both man and the environment.

View Article and Find Full Text PDF

Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling.

View Article and Find Full Text PDF

The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g.

View Article and Find Full Text PDF

2,3-Dimethyl-2,3-diisobutyl succinonitrile was identified as the main volatile organic compound (>90%) emitted from laser printers during the printing process. Experiments were carried out in a large environmental chamber of 30 m3, where the printers were placed and working simulating 'real office setting' conditions. Air samples were taken on Tenax TA adsorbent cartridges in the vicinity of the printers and further analyzed by thermal desorption gas chromatography/mass spectrometry (TDGC/MS).

View Article and Find Full Text PDF

An improved extraction and clean-up method for determination of brain-specific fatty acids, in particular lignoceric acid (C24:0) and the cis/ trans isomers of nervonic acid (15 c-t C24:1), in meat products has been developed. The method is based on isolation of the polar lipids of interest from the bulk lipids by solid-phase extraction. The fatty acids, derivatised to their fatty acid methyl esters, are quantified by GC in a DB5 column.

View Article and Find Full Text PDF