The actinide-actinide bonding in tri-actinide clusters [An₃Cl₆] (An=Ac-Pu, z=1-6) and [An₃Cl₆Cp₃] (z=-2-+3; Cp=(η-CH)) is studied using density functional theory. We find 3-centre bonding similar to the tri-thorium cluster [{Th(η⁸-C₈H₈)(μ₃-Cl)₂}₃{K(THF)₂}₂], as we previously reported (Nature 2021, 598, 72-75). The population of 3-centre molecular orbitals (3c-MOs) by zero, one or two electrons correlates with shortening of the An-An bond lengths, which also decrease with increasing actinide atomic number, consistent with the contraction of the actinide valence atomic orbitals.
View Article and Find Full Text PDFThe tri-thorium cluster [{Th(η -C H )(μ -Cl) } {K(THF) } ] (Nature 2021, 598, 72-75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal-metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η -C H )(μ -Cl) } {K(THF) } ] and examine its responses to an applied magnetic field using a variety of methods.
View Article and Find Full Text PDFIn the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified.
View Article and Find Full Text PDFMultitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with and values of (0.6-5.
View Article and Find Full Text PDFTransition-metal complexes provide rich features in vibrational circular dichroism (VCD) spectra, including significant intensity enhancements, and become thus useful in structural and functional studies of molecules. Quite often, however, the vibrational spectral bands are mixed with the electronic ones, and interpretation of such experiments is difficult. In the present study, we elaborate on the theory needed to calculate the VCD intensities beyond the Born-Oppenheimer (BO) approximation.
View Article and Find Full Text PDF