Publications by authors named "Josef Soucek"

Recombinant plant nucleases R-TBN1 and R-HBN1 were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant nucleases were as effective against melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about 10 times lower concentrations compared to the use of bovine seminal RNase (BS-RNase).

View Article and Find Full Text PDF

Bovine seminal ribonuclease (BS-RNase) is a 27kDa homodimeric enzyme and a member of the pancreatic RNase A superfamily. It is the only RNase with a quaternary structure and it is a mixture of two dimeric forms. In the most abundant form the active site is formed by the swapping of the N-terminal segments.

View Article and Find Full Text PDF

Polyspermine-ribonuclease A (PS-RNase A) and polyspermine-dimeric ribonuclease A (PS-dimeric RNase A) were prepared by cross-linking ribonuclease A or its covalently linked dimer to polyspermine (PS) using dimethyl suberimidate. The two RNase A derivatives were tested for a possible antitumor action. The in vitro and in vivo cytotoxic activity of PS-RNase A, although strong, is not higher than that known for free polyspermine.

View Article and Find Full Text PDF

The antiproliferative and antitumor effect of wheat leaf ribonuclease was tested in vitro on the human ML-2 cell line and in vivo on athymic nude mice bearing human melanoma tumors. The antiproliferative activity of this plant ribonuclease was negligible in comparison with bovine seminal ribonuclease. In the experiments in vivo, a significant decrease of the tumor size, however, was observed in the mice treated with wheat leaf ribonuclease (27 kDa) compared with the control RNase A and polyethylene glycol.

View Article and Find Full Text PDF

The present study was undertaken to provide more information on the nucleolar size and density in mononuclear blastic granulocytic precursors represented by HL-60 cells the proliferation of which was blocked by photodynamic treatment (PDT) which induced apoptotic process without preceding terminal maturation. Both the nucleolar size and density did not change in apoptotic cells in comparison with controls. Thus, large and dense nucleoli in apoptotic cells are not necessarily related to the nucleolar biosynthetic or cell proliferation activity.

View Article and Find Full Text PDF

Onconase (ONC) and bovine seminal ribonuclease (BS-RNase) are homologs of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, ONC and BS-RNase can evade the cytosolic ribonuclease inhibitor protein and are potent cytotoxins. Here, the endogenous cytotoxic activities of ONC and BS-RNase are compared in a wide variety of assays.

View Article and Find Full Text PDF

Subcutaneous application of bovine RNase A conjugated to HYase (bovine hyaluronidase), polyethylene glycol (PEG) and HYase+PEG resulted in a marked reduction of the width of the spermatogenic layers of the mouse testes. The number of sperms in caput epididymidis was significantly decreased in mice injected with conjugated RNase A. There was not any significant embryotoxic effect of free RNase A even conjugated with HYse, PEG and HYse+PEG.

View Article and Find Full Text PDF

Expression of cell cycle-regulating genes was studied in human myeloid leukemia cell lines ML-1, ML-2 and ML-3 during induction of differentiation in vitro. Myelomonocytic differentiation was induced by phorbol ester (12-o-Tetradecanoyl-phorbol-13-acetate, TPA), tumor necrosis factor alpha (TNFalpha) or interferon gamma (INFgamma), or their combination. Differentiation (with the exception of TNFalpha alone) was accompanied by inhibition of DNA synthesis and cell cycle arrest.

View Article and Find Full Text PDF

Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice.

View Article and Find Full Text PDF

We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation.

View Article and Find Full Text PDF

RNase A (bovine pancreatic ribonuclease) and BS-RNase (bovine seminal ribonuclease) are monomeric and dimeric enzymes, respectively, with aspermatogenic and antitumor activities. While the aspermatogenic and, in some experimental situations, the antitumor effects of the RNase A are only minor, the activity of BS-RNase in these phenomena is very significant. These differences can be annulled by means of conjugation of the enzymes with PEG (polyethylene glycol) chains.

View Article and Find Full Text PDF

Bovine seminal ribonuclease (BS-RNase) is a dimer in which the subunits are cross-linked by disulfide bonds between Cys31 of one subunit and Cys32 of the other. Dimeric BS-RNase is resistant to ribonuclease inhibitor (RI), a protein endogenous to mammalian cells, and is toxic to a variety of cell types. Monomeric BS-RNase (like its homolog, RNase A) is bound tightly by RI and is not cytotoxic.

View Article and Find Full Text PDF