The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO3 × 2H2O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2014
The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2012
Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable.
View Article and Find Full Text PDFHealth care associated infections, the fourth leading cause of disease in industrialised countries, are a major health issue. One part of this condition is based on the increasing insertion and implantation of prosthetic medical devices, since presence of a foreign body significantly reduces the number of bacteria required to produce infection. The most significant hospital-acquired infections, based on frequency and potential severity, are those related to procedures e.
View Article and Find Full Text PDFIn the present work, the authors produce a Ti surface with a TiO₂ nanotube coating and investigate the electrochemical filling of these layers with MoO₃. The authors demonstrate that using a potential cycling technique, a homogenous MoO₃ coating can be generated. Controllable and variable coating thicknesses are achieved by a variation of the number of cycles.
View Article and Find Full Text PDF