Additive manufacturing provides high design flexibility, but its use is restricted by limited mechanical properties compared to conventional production methods. As technology is still emerging, several approaches exist in the literature for quantifying and improving mechanical properties. In this study, we investigate characterizing materials' response of additive manufactured structures, specifically by fused deposition modeling (FDM).
View Article and Find Full Text PDFThis paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee-Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid-structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee-Sacks model is well-suited to reproduce the anisotropic stress-strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee-Sacks model that matches biaxial stress-strain data from the literature more closely, over a wider range of strains, than other soft tissue models.
View Article and Find Full Text PDFThis paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism.
View Article and Find Full Text PDF