Publications by authors named "Josef G Trapani"

Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish.

View Article and Find Full Text PDF

The AAA NSF complex is responsible for SNARE complex disassembly both before and after membrane fusion. Loss of NSF function results in pronounced developmental and degenerative defects. In a genetic screen for sensory deficits in zebrafish, we identified a mutation in nsf, I209N, that impairs hearing and balance in a dosage-dependent manner without accompanying defects in motility, myelination, and innervation.

View Article and Find Full Text PDF

Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish.

View Article and Find Full Text PDF

GABAA receptors mediate rapid responses to the neurotransmitter gamma-aminobutyric acid and are robust regulators of the brain and spinal cord neural networks that control locomotor behaviors, such as walking and swimming. In developing zebrafish, gross pharmacological blockade of these receptors causes hyperactive swimming, which is also a feature of many zebrafish epilepsy models. Although GABAA receptors are important to control locomotor behavior, the large number of subunits and homeostatic compensatory mechanisms have challenged efforts to determine subunit-selective roles.

View Article and Find Full Text PDF

Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion.

View Article and Find Full Text PDF

Here we introduce a novel set of laboratory exercises for teaching about hair cell structure and function and dose-response relationships via fluorescence microscopy. Through fluorescent labeling of lateral line hair cells, students assay aminoglycoside block of mechanoelectrical transduction (MET) channels in larval zebrafish. Students acquire and quantify images of hair cells fluorescently labeled with FM 1-43, which enters the hair cell through MET channels.

View Article and Find Full Text PDF

Without stimuli, hair cells spontaneously release neurotransmitter leading to spontaneous generation of action potentials (spikes) in innervating afferent neurons. We analyzed spontaneous spike patterns recorded from the lateral line of zebrafish and found that distributions of interspike intervals (ISIs) either have an exponential shape or an "L" shape that is characterized by a sharp decay but wide tail. ISI data were fitted to renewal-process models that accounted for the neuron refractory periods and hair-cell synaptic release.

View Article and Find Full Text PDF

In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity.

View Article and Find Full Text PDF

Key Points: Using high-speed videos time-locked with whole-animal electrical recordings, simultaneous measurement of behavioural kinematics and field potential parameters of C-start startle responses allowed for discrimination between short-latency and long-latency C-starts (SLCs vs. LLCs) in larval zebrafish. Apart from their latencies, SLC kinematics and SLC field potential parameters were intensity independent.

View Article and Find Full Text PDF

Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients.

View Article and Find Full Text PDF

Unlabelled: The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells.

View Article and Find Full Text PDF

Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell).

View Article and Find Full Text PDF

Sensory receptors are the functional link between the environment and the brain. The repair of sensory organs enables animals to continuously detect environmental stimuli. However, receptor cell turnover can affect sensory acuity by changing neural connectivity patterns.

View Article and Find Full Text PDF

Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes) in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2) under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET) channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light.

View Article and Find Full Text PDF

Cortical lawns prepared from sea urchin eggs have offered a robust in vitro system for study of regulated exocytosis and membrane fusion events since their introduction by Vacquier almost 40 years ago (Vacquier in Dev Biol 43:62-74, 1975). Lawns have been imaged by phase contrast, darkfield, differential interference contrast, and electron microscopy. Quantification of exocytosis kinetics has been achieved primarily by light scattering assays.

View Article and Find Full Text PDF

The advent of optogenetics and genetically encoded photosensors has provided neuroscience researchers with a wealth of new tools and methods for examining and manipulating neuronal function in vivo. There exists now a wide range of experimentally validated protein tools capable of modifying cellular function, including light-gated ion channels, recombinant light-gated G protein-coupled receptors, and even neurotransmitter receptors modified with tethered photo-switchable ligands. A large number of genetically encoded protein sensors have also been developed to optically track cellular activity in real time, including membrane-voltage-sensitive fluorophores and fluorescent calcium and pH indicators.

View Article and Find Full Text PDF

Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesicles and its requirement for acidification of intracellular compartments.

View Article and Find Full Text PDF

Ribbon synapses of the ear, eye and pineal gland contain a unique protein component: Ribeye. Ribeye consists of a novel aggregation domain spliced to the transcription factor CtBP2 and is one of the most abundant proteins in synaptic ribbon bodies. Although the importance of Ribeye for the function and physical integrity of ribbon synapses has been shown, a specific role in synaptogenesis has not been described.

View Article and Find Full Text PDF

Many auditory, vestibular, and lateral-line afferent neurons display spontaneous action potentials. This spontaneous spiking is thought to result from hair-cell glutamate release in the absence of stimuli. Spontaneous release at hair-cell resting potentials presumably results from Ca(V)1.

View Article and Find Full Text PDF

Sensory signal transduction, the process by which the features of external stimuli are encoded into action potentials, is a complex process that is not fully understood. In fish and amphibia, the lateral-line organ detects water movement and vibration and is critical for schooling behavior and the detection of predators and prey. The lateral-line system in zebrafish serves as an ideal platform to examine encoding of stimuli by sensory hair cells.

View Article and Find Full Text PDF

To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1).

View Article and Find Full Text PDF

Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype.

View Article and Find Full Text PDF

Current magnitude in Kv2.1 potassium channels is modulated by external [K+]. In contrast to behavior expected from the change in electrochemical driving force, outward current through Kv2.

View Article and Find Full Text PDF
Potassium channels.

IEEE Trans Nanobioscience

March 2005

Potassium channels are integral membrane proteins that selectively transport K+ across the cell membrane. They are present in all mammalian cells and have a wide variety of roles in both excitable and nonexcitable cells. The phenotypic diversity required to accomplish their various roles is created by differences in conductance, the timecourse and mechanisms of different gating events, and the interaction of channels with a variety of accessory proteins.

View Article and Find Full Text PDF

The location of the tetraethylammonium (TEA) binding site in the outer vestibule of K+ channels, and the mechanism by which external TEA slows C-type inactivation, have been considered well-understood. The prevailing model has been that TEA is coordinated by four amino acid side chains at the position equivalent to Shaker T449, and that TEA prevents a constriction that underlies inactivation via a foot-in-the-door mechanism at this same position. However, a growing body of evidence has suggested that this picture may not be entirely correct.

View Article and Find Full Text PDF