The supporting role of proteases in tumor progression and invasion is well known; however, the use of proteases as therapeutic agents has also been demonstrated. In this article, the authors report on the differential effects of exogenous serine proteases on the motility of tumor and normal cells. The treatment of normal and tumor cells with a single dose of pancreatic serine proteases, trypsin (TR) and chymotrypsin (CH), leads to a concentration-dependent response by cells, first accelerating and then slowing mobility.
View Article and Find Full Text PDFOxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively.
View Article and Find Full Text PDFProteases and their inhibitors have long been investigated in numerous tumor systems, and at the tumor growing front, their balance has been universally found to be shifted towards higher proteolytic activities. However, out of many promising serine and metalloproteinase inhibitors, none are included in cancer treatment regimens at present. The current search for active antiproteolytic compounds is in contrast to the classical approach developed by John Beard, who suggested treating advanced cancer by fresh pancreatic extracts whose antitumor activity was based on their proteolytic potential.
View Article and Find Full Text PDFA continuous cell line, MC3T3-E1 cells, originally derived from murine calvaria bones, loses its osteogenic properties as a result of extended passage number under stress conditions. These aged/stressed MC3T3-S cells, although nontumorigenic, do not display some of the osteogenic properties characteristic of the MC3T3-E1 cells. Altered properties include low expression of alkaline phosphatase, diminished collagen synthesis and inability to form mineralized nodules in vitro.
View Article and Find Full Text PDF