Publications by authors named "Josef Chudoba"

Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes.

View Article and Find Full Text PDF
Article Synopsis
  • Catalyst recovery is crucial in photoredox catalysis, typically addressed by using sacrificial agents, but these can lead to side reactions that reduce efficiency.
  • A new method utilizes acetonitrile as both a solvent and an electron acceptor under anaerobic conditions, enhancing catalyst recovery without side reactions.
  • This approach successfully oxidizes various alcohols and ketones with high yields while avoiding over-oxidation, supported by advanced mechanistic studies highlighting the importance of electron transfer for catalyst recovery.
View Article and Find Full Text PDF

We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.

View Article and Find Full Text PDF

Flavinium salts are frequently used in organocatalysis but their application in photoredox catalysis has not been systematically investigated to date. We synthesized a series of 5-ethyl-1,3-dimethylalloxazinium salts with different substituents in the positions 7 and 8 and investigated their application in light-dependent oxidative cycloelimination of cyclobutanes. Detailed mechanistic investigations with a coumarin dimer as a model substrate reveal that the reaction preferentially occurs via the triplet-born radical pair after electron transfer from the substrate to the triplet state of an alloxazinium salt.

View Article and Find Full Text PDF

Nitrosobenzene has been demonstrated to participate in the Mitsunobu reaction in an analogous manner to dialkyl azodicarboxylates. The protocol using nitrosobenzene and triphenylphosphine (1:1) under mild conditions (0 °C) provides the ester derivatives of aliphatic and aromatic acids using various alcohols in moderate yield and with good enantioselectivity, giving the desired products predominantly with an inversion of configuration. The proposed mechanism, which is analogous to that observed using dialkyl azodicarboxylates, involves a nitrosobenzene-triphenylphosphine adduct and an alkoxytriphenylphosphonium ion and was supported by density functional theory calculations, P NMR spectroscopy, and experiments conducted with isotopically labeled substrates.

View Article and Find Full Text PDF

Triphenylphosphine (Ph3P) activated by various electrophiles (e.g., alkyl diazocarboxylates) represents an effective mediator of esterification and other nucleophilic substitution reactions.

View Article and Find Full Text PDF

Haemosporidians and trypanosomes of the northern goshawk (Accipiter gentilis) population in the Czech Republic were studied by morphological and molecular methods. Despite the wide distribution of these medium-large birds of prey, virtually nothing is known about their blood parasites. During a 5-year period, altogether 88 nestlings and 15 adults were screened for haemosporidians and trypanosomes by microscopic examination of blood smears and by nested PCR.

View Article and Find Full Text PDF

A new application of flavin derivatives in visible light photocatalysis was found. 1-Butyl-7,8-dimethoxy-3-methylalloxazine, when irradiated by visible light, was shown to allow an efficient cyclobutane ring formation via an intramolecular [2+2] cycloaddition of both styrene dienes, considered as electron-rich substrates, and electron-poor bis(arylenones), presumably proceeding via an energy transfer mechanism.

View Article and Find Full Text PDF

A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quantitative conversions, high preparative yields and excellent chemoselectivity.

View Article and Find Full Text PDF

Rhamnolipids are naturally occurring biosurfactants with a wide range of potential commercial applications. As naturally derived products they present an ecological alternative to synthetic surfactants. The majority of described rhamnolipid productions are single strain Pseudomonas spp.

View Article and Find Full Text PDF

Flavin-catalysed oxidative hydroxylation of substituted arylboronic acids by molecular oxygen with the assistance of hydrazine or ascorbic acid resulted in phenols in high yields. This mild organocatalytic protocol is compatible with a variety of functional groups and it is alternatively usable for transformation of alkylboronic acids to alcohols. Reaction takes place also in water and fulfils criteria for a green procedure.

View Article and Find Full Text PDF

Rhamnolipid production by two non-pathogenic bacterial strains Acinetobacter calcoaceticus and Enterobacter asburiae, and established rhamnolipid producer Pseudomonas aeruginosa was investigated. Rhamnolipids were separated from supernatant and further purified by thin-layer chromatography. Mass spectrometry with negative electrospray ionization revealed rhamnolipid homologues varying in chain length and unsaturation.

View Article and Find Full Text PDF