Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2 (110) model electrode.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
In the industrially important Chlor-Alkali process, the chlorine evolution reaction (CER) over a ruthenium dioxide (RuO2) catalyst competes with the oxygen evolution reaction (OER). This selectivity issue is elucidated on the microscopic level with the single-crystalline model electrode RuO2(110) by employing density functional theory (DFT) calculations in combination with the concept of volcano plots. We demonstrate that one monolayer of TiO2(110) supported on RuO2(110) enhances the selectivity towards the CER by several orders of magnitudes, while preserving the high activity for the CER.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2013
The mechanisms of formic acid (HCOOH) oxidation on Pt(111) under electrochemical conditions have been studied using density functional theory and then compared with the analogous gas-phase reaction. Results show that HCOOH oxidation under a water-covered surface behaves substantially differently than in the gas phase or using a solvation model involving only a few water molecules. Using these models, we evaluated the detailed reaction process, including energies and geometric structures of intermediates and transition states under the influence of different solvation models and electrode potentials.
View Article and Find Full Text PDFFormic acid (HCOOH) oxidation on Pt(111) under gas-phase conditions is a benchmark heterogeneous catalysis reaction used to probe electro-catalytic HCOOH conversion in fuel cells, itself an important reaction in energy conversion. We used density functional theory (DFT) calculations to elucidate the fundamental oxidation mechanisms of HCOOH in the gas phase, determining the relative strengths of chemical interactions between HCOOH oxidation intermediates and the Pt(111) surface. We focused on investigating how water and adsorption coverage affects reaction intermediate structures and transition states.
View Article and Find Full Text PDFUsing density functional theory and thermodynamic considerations, adsorbate-induced faceting of high-index metal surfaces such as Ir(210) and Re(112 1) has been studied. Focusing on these two systems we first discuss the adsorption behaviour of oxygen and nitrogen on the various surfaces relevant for the faceting, and afterwards use these energies to evaluate the stability of substrates and facets in the presence of oxygen and nitrogen. The faceting phase diagrams of Ir(210) and Re(112 1) show that both adsorbates enhance the anisotropy in surface free energy, finally causing nanofacets to become the thermodynamically favourable surface structure.
View Article and Find Full Text PDF