Previous studies have shown that P19 cells expressing a dominant negative β-catenin mutant (β-cat/EnR) cannot undergo myogenic differentiation in the presence or absence of muscle-inducing levels of retinoic acid (RA). While RA could upregulate premyogenic mesoderm expression, including Pax3/7 and Meox1, only Pax3/7 and Gli2 could be upregulated by RA in the presence of β-cat/EnR. However, the use of a dominant negative construct that cannot be compensated by other factors is limiting due to the possibility of negative chromatin remodelling overriding compensatory mechanisms.
View Article and Find Full Text PDFGain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD.
View Article and Find Full Text PDF