This work presents a comparative study related to the photocatalytic efficiency associated with wettability measurements and organic dye degradation, as well as other relevant properties (i.e., corrosion resistance, roughness, wettability, and adhesion to a substrate).
View Article and Find Full Text PDFThis paper reports the development and characterization of a multifunctional coating that combines anticorrosion and photocatalytic properties, deposited by means of the electrospinning technique. In the first step, a functional electrospun fiber mat composed of poly(acrylic acid) (PAA) and β-cyclodextrin (β-CD) was obtained, showing high water insolubility and great adhesion increased by means of a thermal crosslinking process (denoted as PAA + β-CD). In the second step, the fibers were doped with particles of titanium dioxide (denoted as PAA + β-CD/TiO) and titanium dioxide plus iron oxide (denoted as PAA + β-CD/TiO/FeO).
View Article and Find Full Text PDFThis paper reports the use of the Layer-by-Layer self-assembly (LbL) as an efficient technique for the fabrication of thin-films with antibacterial activity. The LbL coatings are composed of a positive polyelectrolyte such as Poly(allylamine hydrochloride) (PAH) and an anionic polyelectrolyte such as Poly(sodium 4-styrene sulfonate) solution (PSS). In addition, these polyelectrolytes can be also used as an adequate encapsulating agent of specific metal oxide precursors such as titanium dioxide (TiO₂) and iron oxide (Fe₂O₃) nanoparticles, making possible the fabrication of hybrid thin films composed of organic polymeric chains related to the polyelectrolytes and inorganic structure associated to the metal oxide nanoparticles.
View Article and Find Full Text PDF