Publications by authors named "Joseba Bidaurrazaga Van-Dierdonck"

Background: COVID-19, caused by SARS-CoV-2, has spread globally, presenting a significant public health challenge. Vaccination has played a critical role in reducing severe disease and deaths. However, the waning of immunity after vaccination and the emergence of immune-escape variants require the continuation of vaccination efforts, including booster doses, to maintain population immunity.

View Article and Find Full Text PDF

The emergence of infectious diseases with pandemic potential is a major public health threat worldwide. The World Health Organization reports that about 60% of emerging infectious diseases are zoonoses, originating from spillover events. Although the mechanisms behind spillover events remain unclear, mathematical modeling offers a way to understand the intricate interactions among pathogens, wildlife, humans, and their shared environment.

View Article and Find Full Text PDF

Vaccines have measurable efficacy obtained first from vaccine trials. However, vaccine efficacy (VE) is not a static measure and long-term population studies are needed to evaluate its performance and impact. COVID-19 vaccines have been developed in record time and the currently licensed vaccines are extremely effective against severe disease with higher VE after the full immunization schedule.

View Article and Find Full Text PDF

Declared a pandemic by the World Health Organization (WHO), COVID-19 has spread rapidly around the globe. With eventually substantial global underestimation of infection, by the end of March 2022, more than 470 million cases were confirmed, counting more than 6.1 million deaths worldwide.

View Article and Find Full Text PDF

Introduction: Different COVID-19 vaccine efficacies are reported, with remarkable effectiveness against severe disease. The so called sterilizing immunity, occurring when vaccinated individuals cannot transmit the virus, is still being evaluated. It is also unclear to what extent people with no symptoms or mild infection transmit the disease, and estimating their contribution to outbreaks is challenging.

View Article and Find Full Text PDF

Background: The increasing prevalence of childhood obesity makes it essential to study the risk factors with a sample representative of the population covering more health topics for better preventive policies and interventions. It is aimed to develop an ensemble feature selection framework for large-scale data to identify risk factors of childhood obesity with good interpretability and clinical relevance.

Methods: We analyzed the data collected from 426,813 children under 18 during 2000-2019.

View Article and Find Full Text PDF

As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control measures over time. Here we investigate critical fluctuations around the epidemiological threshold, resembling new waves, even when the community disease transmission rate [Formula: see text] is not significantly changing.

View Article and Find Full Text PDF

In March 2020, a multidisciplinary task force (so-called Basque Modelling Task Force, BMTF) was created to assist the Basque health managers and Government during the COVID-19 responses. BMTF is a modelling team, working on different approaches, including stochastic processes, statistical methods and artificial intelligence. Here we describe the efforts and challenges to develop a flexible modeling framework able to describe the dynamics observed for the tested positive cases, including the modelling development steps.

View Article and Find Full Text PDF

The initial exponential growth rate of an epidemic is an important measure that follows directly from data at hand, commonly used to infer the basic reproduction number. As the growth rates λ(t) of tested positive COVID-19 cases have crossed the threshold in many countries, with negative numbers as surrogate for disease transmission deceleration, lockdowns lifting are linked to the behavior of the momentary reproduction numbers r(t), often called R0. Important to note that this concept alone can be easily misinterpreted as it is bound to many internal assumptions of the underlying model and significantly affected by the assumed recovery period.

View Article and Find Full Text PDF