Grapevine (Vitis vinifera L.) is the world's third most valuable horticultural crop, and the current environmental scenario is massively shifting the grape cultivation landscape. The increase in heatwaves and drought episodes alter fruit ripening, compromise grape yield and vine survival, intensifying the pressure on using limited water resources.
View Article and Find Full Text PDFSerbia preserves a high number of local grape varieties, which have been cultivated across the country for centuries. Now, these ancient varieties are in the spotlight, and there is a global trend towards their recovery and characterization because they can revitalize regional, national and international grape and wine sectors. In addition, their genetic study can be useful to find new pedigree relationships to reveal how local varietal assortment evolved over time.
View Article and Find Full Text PDFTo preserve their varietal attributes, established grapevine cultivars ( L. ssp. ) must be clonally propagated, due to their highly heterozygous genomes.
View Article and Find Full Text PDFAnthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.
View Article and Find Full Text PDFMore than 100 grapevine varieties are registered as suitable for wine production in "Douro" and "Trás-os-Montes" Protected Designations of Origin regions; however, only a few are actually used for winemaking. The identification of varieties cultivated in past times can be an important step to take advantage of all the potential of these regions grape biodiversity. The conservation of the vanishing genetic resources boosts greater product diversification, and it can be considered strategic in the valorisation of these wine regions.
View Article and Find Full Text PDFGrapevine cultivar and clone genotype is an important factor in the phenolic composition of wine. In this study, a new intense dark black berry color variant of Tempranillo, known as Tempranillo negro or VN21, is described. A targeted chromatographic approach based on UHPLC-QqQ-MS/MS was used to study the anthocyanins and non-colored phenols of the grape berry (skin and seeds) and wine.
View Article and Find Full Text PDFGrapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection.
View Article and Find Full Text PDFGrapevine is one of the most valuable fruit crops in the world. Adverse environmental conditions reduce fruit quality and crop yield, so understanding the genetic and molecular mechanisms determining crop yield components is essential to optimize grape production. The analysis of a diverse collection of grapevine cultivars allowed us to evaluate the relationship between fruit set-related components of yield, including the incidence of reproductive disorders such as coulure and millerandage.
View Article and Find Full Text PDFGlobal viticulture has evolved following market trends, causing loss of cultivar diversity and traditional practices. In Montenegro, modern viticulture co-exists with a traditional viticulture that still maintains ancient practices and exploits local cultivars. As a result, this region provides a unique opportunity to explore processes increasing genetic diversity.
View Article and Find Full Text PDFSeedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the () locus is the usual source of seedlessness in commercial grapevine () cultivars, the underlying mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation.
View Article and Find Full Text PDFLATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) constitute a family of plant-specific transcription factors with key roles in the regulation of plant organ development, pollen development, plant regeneration, pathogen response, and anthocyanin and nitrogen metabolisms. However, the role of LBDs in fruit ripening and in grapevine (Vitis vinifera L.) development and stress responses is poorly documented.
View Article and Find Full Text PDFGrape () color somatic variants that can be used to develop new grapevine cultivars occasionally appear associated with deletion events of uncertain origin. To understand the mutational mechanisms generating somatic structural variation in grapevine, we compared the Tempranillo Blanco (TB) white berry somatic variant with its black berry ancestor, Tempranillo Tinto. Whole-genome sequencing uncovered a catastrophic genome rearrangement in TB that caused the hemizygous deletion of 313 genes, including the loss of the functional copy for the transcription factors required for anthocyanin pigmentation in the berry skin.
View Article and Find Full Text PDFBackground: MADS-box genes encode transcription factors that are involved in developmental control and signal transduction in eukaryotes. In plants, they are associated to numerous development processes most notably those related to reproductive development: flowering induction, specification of inflorescence and flower meristems, establishment of flower organ identity, as well as regulation of fruit, seed and embryo development. Genomic analyses of MADS-box genes in different plant species are providing new relevant information on the function and evolution of this transcriptional factor family.
View Article and Find Full Text PDFBackground: The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite's ability to use a particular plant as a host.
View Article and Find Full Text PDFBackground: Domestication and selection of Vitis vinifera L. for table and wine grapes has led to a large level of berry size diversity in current grapevine cultivars. Identifying the genetic basis for this natural variation is paramount both for breeding programs and for elucidating which genes contributed to crop evolution during domestication and selection processes.
View Article and Find Full Text PDFThe interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering.
View Article and Find Full Text PDFBackground: Interaction between TERMINAL FLOWER 1 (TFL1) and LEAFY (LFY) seem to determine the inflorescence architecture in Arabidopsis. In a parallel way, overexpression of VvTFL1A, a grapevine TFL1 homolog, causes delayed flowering and production of a ramose cluster in the reiterated reproductive meristem (RRM) somatic variant of cultivar Carignan. To analyze the possible contribution of this gene to cluster phenotypic variation in a diversity panel of cultivated grapevine (Vitis vinifera L.
View Article and Find Full Text PDFBackground: Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too.
View Article and Find Full Text PDFThe FLESHLESS BERRY (Flb) somatic variant identified in the grapevine cultivar Ugni Blanc develops grape berries without flesh, suggesting a role for the altered gene in differentiation of flesh cells. Here we describe identification of the molecular defect responsible for this phenotype. Using a combination of genetic and transcriptomic approaches, we detected the insertion of a miniature inverted-repeat transposable element in the promoter region of the PISTILLATA-like (VvPI) gene, the grapevine homologue of Arabidopsis PISTILLATA.
View Article and Find Full Text PDFThe grapevine reproductive cycle has a number of unique features. Inflorescences develop from lateral meristems (anlagen) in latent buds during spring and summer and enter a dormant state at a very immature stage before completing development and producing flowers and berries the following spring. Lateral meristems are unique structures derived from the shoot apical meristem and can either develop into an inflorescence or a tendril.
View Article and Find Full Text PDFMutants have proven to be a key resource for functional genomic studies in model annual plant species. In perennial plant species where mutants are difficult to generate and to screen, spontaneous somatic variants represent a unique resource to understand the genetic control of complex developmental patterns. The morphological and histological characterization of six Vitis vinifera L.
View Article and Find Full Text PDFThe FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences.
View Article and Find Full Text PDFThe timing of flower initiation is a highly plastic developmental process. To achieve reproductive success, plants must select the most favourable season to initiate reproductive development; this in turn requires continuous monitoring of environmental factors and a properly response. Environmental factors which change in a predictable fashion along the year, such as light and temperature, are the most relevant in terms of selection of the flowering season.
View Article and Find Full Text PDFThe timing of flowering initiation depends on the balanced expression of a complex network of genes that are regulated by both endogenous and environmental factors. We showed previously that mutations at the EARLY BOLTING IN SHORT DAYS (EBS) locus of Arabidopsis result in an acceleration of flowering, especially in noninductive photoperiods (short days), and other phenotypic anomalies. We have identified the EBS gene and demonstrate that it encodes a nuclear protein that contains a bromoadjacent homology domain and a plant homeodomain Zn finger.
View Article and Find Full Text PDF