Publications by authors named "Jose-Maria Trifaro"

Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin (Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites.

View Article and Find Full Text PDF

The presence of myosin II and V in chromaffin cells and their subcellular distribution is described. Myosin II and V distribution in sucrose density gradients showed only a strong correlation between the distribution of myosin V and secretory vesicle markers. Confocal microscopy images demonstrated colocalization of myosin V with dopamine beta-hydroxylase, a chromaffin vesicle marker, whereas myosin II was present mainly in the cell cortex.

View Article and Find Full Text PDF

Neurosecretory cells, including chromaffin cells, possess a mesh of filamentous actin underneath the plasma membrane. It has been proposed that filamentous actin network separates the secretory vesicles into two compartments: the reserve pool and the release-ready vesicle pool. Disassembly of chromaffin cell cortical filamentous actin in response to stimulation allows the movement of vesicles from the reserve pool into the release-ready vesicle pool.

View Article and Find Full Text PDF

A large number of molecular biology studies have been performed on chromaffin cells, and many genes involved in catecholamine synthesis, storage, and release have been cloned and their function determined. Catecholamine synthesis takes place in different cellular compartments, and enzymes involved in this process are subject to a fine regulation, as demonstrated by recent studies on their gene promoters. Genes coding for such intravesicular proteins as chromogranin A, B, and secretogranin II (chromogranin C) are also regulated in response to a variety of stimuli.

View Article and Find Full Text PDF